Direct Calculation of Entropy Generation by Solving Reynolds-Averaged Entropy Transport Equation in an Air-Cooled Turbine Cascade

2012-06-15
Orhan, Omer Emre
Uzol, Oğuz
This paper presents an implementation of directly solving Reynolds-Averaged Entropy Transport equation as a part of the CFD solution to predict entropy generation rates in a two-dimensional turbine blade stator section. The Reynolds Averaged Entropy Transport and the necessary modeling. equations are implemented to a commercial CFD solver as a User Defined Scalar (UDS). The results are compared with those obtained by post-processing the temperature and velocity fields obtained by solving full Navier-Stokes equations using a k-epsilon closure. Results show. that there could be significant differences especially in the spatial distributions of entropy fields. This type of approach could offer significant improvements in entropy and loss prediction in turbomachinery flows. However, more studies especially for accurate modeling of temperature fluctuations and temperature-velocity correlations in the entropy transport equation are needed.

Suggestions

Computation of multi-passage cascade flows with overset and deforming grids
Tuncer, İsmail Hakkı (null; 1997-12-01)
An overset grid method is applied to the solution of single and multi-passage cascade flows with a compressible Navier-Stokes solver. C-type grids around individual blades are overset onto a Cartesian background grid. Overset grids are allowed to move in time relative to each other as prescribed by the oscillatory plunging motion. The overset grid method uses a simple, robust numerical algorithm to localize moving boundary points and to interpolate solution variables across intergrid boundaries. Computation...
MULTI-OBJECTIVE AERODYNAMIC OPTIMIZATION OF AXIAL TURBINE BLADES USING A NOVEL MULTI-LEVEL GENETIC ALGORITHM
Oeksuz, Oezhan; Akmandor, Ibrahim Sinan (2008-06-13)
In this paper, a new multiploid genetic optimization method handling surrogate models of the CID solutions is presented and applied for multi objective turbine blade aerodynamic optimization problem. A fast, efficient, robust, and automated design method is developed to aerodynamically optimize 3D gas turbine blades. The design objectives are selected as maximizing the adiabatic efficiency and torque so as to reduce the weight, size and cost of the gas turbine engine. A 3-Dimensional steady Reynolds Average...
Numerical Investigation of Nano-Cavities for Optimal Power Absorption in Solar Cells
Karaosmanoglu, Bariscan; Topcuoglu, Ulas; Tuygar, Emre; Ergül, Özgür Salih (2018-06-01)
We present a numerical study of nano-cavities used in solar cells for energy harvesting, by employing surface integral equations based on Maxwell's equations in the frequency domain and an efficient solver based on the multilevel fast multipole algorithm (MLFMA). With the three-dimensional modeling of surfaces, we obtain accurate results to evaluate the performances of different structures for improved power absorption in solar cells. This paper includes a brief description of the developed solver and initi...
Photoexcitation Dynamics in Films of C-60 and Zn Phthalocyanine with a Layered Nanostructure
Lane, Paul A.; Cunningham, Paul D.; Melinger, Joseph S.; Kushto, Gary P.; Esentürk, Okan; Heilweil, Edwin J. (2012-02-15)
We elucidate photoexcitation dynamics in C-60 and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C-60 is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C-60 are determined by modeling the rise of ground state bleaching of ZnPc absorption following C-60 ...
Implicit lattice boltzmann method for laminar/turbulent flows
Çevik, Fatih; Albayrak, Kahraman; Department of Mechanical Engineering (2016)
Lattice Boltzmann Method is an alternative computational method for fluid physics problems. The development of the method started in the late 1980s and early 1990s. Various numerical schemes like stream and collide, finite difference, finite element and finite volume schemes are used to solve the discrete Lattice Boltzmann Equation. Almost all of the numerical schemes in the literature are explicit schemes to exploit the natural features of the discrete Lattice Boltzmann Equation like parallelism and easy c...
Citation Formats
O. E. Orhan and O. Uzol, “Direct Calculation of Entropy Generation by Solving Reynolds-Averaged Entropy Transport Equation in an Air-Cooled Turbine Cascade,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54019.