Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Basic Power Electronic Laboratory Experiment Allowing Comprehensive and Structured Learning: Multi-Phase Capacitive Loaded Full-Bridge Rectifier
Date
2018-08-30
Author
Oztoprak, Oguzhan
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
This paper provides a compact and fundamental level power electronics laboratory experiment about capacitive loaded three single-phase full-bridge diode rectifiers. While the procedure of the experiment is simple, the experiment provides wide range of opportunities for comprehensive learning on the important aspects of power electronics. The nonlinear circuit behavior of the rectifier and performance characterization are demonstrated as the conventional experiments. Moreover, the influence of the power source impedance on the power quality, the type and size of filtering for harmonic reduction are demonstrated on the single-phase rectifier. Furthermore, the three-phase connection type of the rectifiers with the delta and Y connection are utilized for isolating the triplen and nontriplen harmonics. Thus, the converter generated harmonics are observed and a good comprehension of them is provided. The structured, step-by-step experiment has been applied in the undergraduate power electronics courses for several years and has been confirmed as an efficient method for teaching power electronics at fundamental level. The experimental setup is easy to implement in terms of hardware and operation and has overall low cost, such that it can be implemented in any power electronics laboratory around the world.
Subject Keywords
Crest factor
,
Total harmonic distortion
,
Power quality
,
Power factor
,
Nonlinear
,
Harmonics
,
Filter
,
Rectifier
URI
https://hdl.handle.net/11511/54067
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
A 180 nm Self-Powered Rectifier Circuit for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2013-12-18)
This paper presents a new self-powered low voltage rectifier implementation for vibration-based electromagnetic (EM) energy harvesters. The proposed circuit is an improved version of the previously reported rectifier, which was designed in TSMC 90 nm CMOS technology. The circuit is designed in lower cost UMC 180 nm CMOS technology, and uses a passive AC/DC quadrupler structure to supply the external power of the utilized active components. Simulation results show that the maximum power conversion efficiency...
A unity-power-factor buck-type PWM rectifier for medium/high-power DC motor drive applications
Bilgin, HF; Kose, KN; Zenginobuz, G; Ermiş, Muammer; Nalcaci, E; Cadirci, I; Kose, H (2002-09-01)
This paper describes the application of a single-stage unity-power-factor buck-type pulsewidth modulation (PWM) rectifier to medium- and high-power variable-speed dc motor drives. The advantages of the developed system are low harmonic distortion in ac supply currents (complying with IEEE Std. 519 and IEC 555), nearly unity power factor over a wide operating shaft speed range, and nearly level armature current and voltage waveforms. These properties of output voltage and current quantities of the converter ...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
A Selective Harmonic Amplification Method for Reduction of kVA Rating of Current Source Converters in Shunt Active Power Filters
Terciyanli, Alper; Ermiş, Muammer; Cadirci, Isik (2011-01-01)
This paper describes a new approach to the design of current-source converter (CSC)-based shunt active power filters (APFs) to reduce the converter kilovolt-ampere rating considerably. This design approach is called the selective harmonic amplification method (SHAM), and is based on the amplification of some selected harmonic current components of CSC by the ac-side filter, and the CSC control system specifically designed for this purpose. The proposed SHAM has been implemented on a CSC-based APF for the el...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Oztoprak and A. M. Hava, “A Basic Power Electronic Laboratory Experiment Allowing Comprehensive and Structured Learning: Multi-Phase Capacitive Loaded Full-Bridge Rectifier,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54067.