Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Assembly of a Static Magnetic Field Generator for Lorentz Field Electrical Impedance Tomography
Date
2016-01-01
Author
Tetik, Ahmet Onder
Ghalichi, Elyar
Kaboutari, Keivan
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
0
downloads
Cite This
In Lorentz Field Electrical Impedance Tomography (LFEIT), ultrasound waves are transmitted to a tissue under static magnetic field. Magnetic fields of currents generated in boundaries where conductivity difference exists because of vibrations are measured with coils. In this study, a static magnetic field is created with permanent magnets and magnetic core for LFEIT. The contribution of magnetic core to the created magnetic flux density is demonstrated. Based on these simulation studies magnetic core is designed. To safely assemble the magnets and the core, force and torque calculations are performed in COMSOL Multiphysics. Consequently based on these calculations appropriate devices are designed for the assembly. The distribution of magnetic flux density in the air gap of core is evaluated numerically and experimentally. The relative error of magnetic flux density between the numerical and experimental values is provided. The maximum relative error is around 10.47% among 120 points where magnetic flux density is measured.
Subject Keywords
Calculating Magnetic Force
,
Assembly of a Neodymium magnets
,
Lorentz Field Electrical Impedance Tomography;
,
Electrical Impedance Tomography
URI
https://hdl.handle.net/11511/54077
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Data acquisition system for Lorentz force electrical impedance tomography using magnetic field measurements
Kaboutari, Keivan; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2017)
Lorentz Force Electrical Impedance Tomography (LFEIT) is a novel imaging modality to image electrical conductivity properties of biological tissues. This modality is recently proposed for early stage diagnosis of cancerous tissues. The main aim of this thesis study is to develop a data acquisition system for LFEIT. Design of contactless receiver sensor, static magnetic field generation (0.56 T is generated by permanent neodymium magnets), amplification of received signals and experimental studies using vari...
Data acquisition system for MAET with magnetic field measurements
Kaboutari, Keivan; Tetik, Ahmet Onder; Ghalichi, Elyar; Gozu, Mehmet Soner; Zengin, Reyhan; Gençer, Nevzat Güneri (2019-06-01)
Magneto-acousto-electrical tomography (MAET) is an imaging modality to image the electrical conductivity of biological tissues. It is based on electrical current induction by using ultrasound under a static magnetic field. The aim of this study is to develop a data acquisition system for MAET based on magnetic field measurements. The static magnetic field is generated by six permanent neodymium magnets. A 16-element linear phased array (LPA) transducer is utilized to generate acoustic pressure waves inside ...
Design and implementation of magnetic field sensors for biomedical applications /
İnan, Ulaş Can; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2015)
In this work, firstly the magnetic sensor types and their feasibility for biomedical applications are investigated. Then the air-cored induction coil sensor is chosen due to its advantages. Afterwards the usage of induction coils combined with amplifiers and connection types are studied. The biomedical applications requiring the use of magnetic field sensors are introduced. One of them, Lorentz Field Electrical Impedance Tomography (LFEIT) is explained in detail and experimental work is done for this applic...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Distinguishability for Magnetic Resonance-Electric Impedance Tomography (MR-EIT)
Altunel, H.; Eyüboğlu, Behçet Murat; KÖKSAL, ADNAN (2006-09-01)
In magnetic resonance-electrical impedance tomography, magnetic flux density due to current injection is the measured quantity. Different conductivity distributions create different magnetic flux density distributions. Distinguishability for MR-EIT is defined using this fact. The definition is general and valid for 2D as well as 3D structures of any shape. It is not always possible to find an analytic expression for distinguishability. However, when a 2D cylindrical body with concentric inhomogeneity is con...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. O. Tetik, E. Ghalichi, K. Kaboutari, and N. G. Gençer, “Design and Assembly of a Static Magnetic Field Generator for Lorentz Field Electrical Impedance Tomography,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54077.