Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the number of topologies on a finite set
Date
2019-01-01
Author
Kızmaz, Muhammet Yasir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T-0(n) denotes the number of distinct T-0 topologies on the set X. In the present paper, we prove that for any prime p, T(p(k)) k+ 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T-0(p + n) T-0(n + 1) (mod p).
Subject Keywords
Topology
,
Finite sets
,
T-0 topology
,
Quality improvement
,
logistic regression
,
Decision tree algorithm C5.0
,
Casting industry
URI
https://hdl.handle.net/11511/54206
Journal
ALGEBRA & DISCRETE MATHEMATICS
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
On the influence of fixed point free nilpotent automorphism groups
Ercan, Gülin (2017-12-01)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that for all nonidentity elements . Let FH be a Frobenius-like group with complement H of prime order such that is of prime order. Suppose that FH acts on a finite group G by automorphisms where in such a way that In the present paper we prove that the Fitting series of coincides with the intersections of with the Fitting series of G, and the nilpotent length of G exceeds the...
On the arithmetic operations over finite fields of characteristic three with low complexity
AKLEYLEK, SEDAT; Özbudak, Ferruh; Özel, Claire Susanna (2014-03-15)
In this paper, the Hermite polynomial representation is adapted as a new way to represent certain finite fields of characteristic three. We give the multiplication method to multiply two elements of F-3n in the Hermite polynomial representation with subquadratic computational complexity by using a divide-and-conquer idea. We show that in some cases there is a set of irreducible binomials in the Hermite polynomial representation to obtain modular reduction with a lower addition complexity than the standard p...
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
On local finiteness of periodic residually finite groups
Kuzucouoglu, M; Shumyatsky, P (2002-10-01)
Let G be a periodic residually finite group containing a nilpotent subgroup A such that C-G (A) is finite. We show that if [A, A(g)] is finite for any g is an element of G, then G is locally finite.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Y. Kızmaz, “On the number of topologies on a finite set,”
ALGEBRA & DISCRETE MATHEMATICS
, pp. 50–57, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54206.