Free-Space Fundamental Solution of a 2D Steady Slow Viscous MHD Flow

Sellier, A.
Tezer, Münevver
The fundamental free-space 2D steady creeping MHD flow produced by a concentrated point force of strength g located at a so-called source point x(0) in an unbounded conducting Newtonian liquid with uniform viscosity mu and conductivity sigma > 0 subject to a prescribed uniform ambient magnetic field B = Be-1 is analytically obtained. More precisely, not only the produced flow pressure p and velocity u but also the resulting stress tensor field sigma are expressed at any observation point x not equal x(0) in terms of usual modified Bessel functions, the vectors g, x - x(0) and the so-called Hartmann layer thickness d = (root mu/sigma)/B (see Hartmann (1937)). The resulting basic flows obtained for g either parallel with or normal to the magnetic field B are examined and found to exhibit quite different properties.


A numerical solution of the steady MHD flow through infinite strips with BEM
Bozkaya, Canan; Tezer, Münevver (2012-04-01)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in infinite channels in the presence of a magnetic field is investigated. The fluid is driven either by a pressure gradient or by the currents produced by electrodes placed parallel in the middle of the walls. The applied magnetic field is perpendicular to the infinite walls which are combined from conducting and insulated parts. A boundary element method (BEM) solution has been obtained by using a fundamental so...
Least-squares spectral element solution of incompressible Navier-Stokes equations with adaptive refinement
Ozcelikkale, Altug; Sert, Cüneyt (2012-05-01)
Least-squares spectral element solution of steady, two-dimensional, incompressible flows are obtained by approximating velocity, pressure and vorticity variable set on GaussLobatto-Legendre nodes. Constrained Approximation Method is used for h- and p-type nonconforming interfaces of quadrilateral elements. Adaptive solutions are obtained using a posteriori error estimates based on least squares functional and spectral coefficient. Effective use of p-refinement to overcome poor mass conservation drawback of ...
A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels
Bozkaya, Canan; Tezer, Münevver (2012-08-15)
Magnetohydrodynamic flows in coupled rectangular channels are numerically investigated under an external, horizontally applied magnetic field. The flows are driven by constant pressure gradients in the channels, which are separated with a thin partly insulating and partly conducting barrier. A direct boundary element formulation is utilized to solve these two-dimensional steady, convection-diffusion type coupled partial differential equations in terms of velocity and induced magnetic fields. The resulting s...
Two-way Fourier Split Step Algorithm over Variable Terrain with Narrow and Wide Angle Propagators
Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoğlu, Mustafa; Sevgi, Levent (2010-07-17)
Helmholtz's wave equation can be approximated by means of two differential equations, corresponding to forward and backward propagating waves each of which is in parabolic wave equation (PWE) form. The standard PWE is very suitable for marching-type numerical solutions. The one-way Fourier split-step parabolic equation algorithm (SSPE) is highly effective in modeling electromagnetic (EM) wave propagation above the Earth's irregular surface through inhomogeneous atmosphere. The two drawbacks of the standard ...
Method of lines for transient flow fields
Tarhan, T; Selçuk, Nevin (2001-01-01)
A computational fluid dynamics (CFD) code based on the method of lines (MOL) approach was developed for the solution of transient, two-dimensional Navier-Stokes equations for incompressible separated internal flows in complex rectangular geometries. The predictive accuracy of the code was tested by applying it to the prediction of flow fields in both laminar and turbulent channel flows with and without sudden expansion, and comparing its predictions with either measured data or numerical results available i...
Citation Formats
A. Sellier, S. H. AYDIN, and M. Tezer, “Free-Space Fundamental Solution of a 2D Steady Slow Viscous MHD Flow,” CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, pp. 393–406, 2014, Accessed: 00, 2020. [Online]. Available: