Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Two-way Fourier Split Step Algorithm over Variable Terrain with Narrow and Wide Angle Propagators
Date
2010-07-17
Author
Ozgun, Ozlem
Apaydin, Gökhan
Kuzuoğlu, Mustafa
Sevgi, Levent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Helmholtz's wave equation can be approximated by means of two differential equations, corresponding to forward and backward propagating waves each of which is in parabolic wave equation (PWE) form. The standard PWE is very suitable for marching-type numerical solutions. The one-way Fourier split-step parabolic equation algorithm (SSPE) is highly effective in modeling electromagnetic (EM) wave propagation above the Earth's irregular surface through inhomogeneous atmosphere. The two drawbacks of the standard PWE are: (i) It handles only the forward-propagating waves, and cannot account for the backscattered ones. The forward waves are usually adequate for typical longrange propagation scenarios. However, the backward waves become significant in the presence of obstacles that redirect the incoming wave. Hence, this necessitates the accurate estimation of the multipath effects to model the tropospheric wave propagation over terrain, (ii) It is a narrow-angle approximation, which consequently restricts the accuracy to propagation angles up to 10°-15° from the paraxial direction. To handle propagation angles beyond these values, wide-angle propagators have been introduced. Recently, a two-way SSPE algorithm was implemented to incorporate the backwardpropagating waves into the standard one-way SSPE, through a recursive forwardbackward scheme to model the tropospheric electromagnetic propagation over a staircase-approximated terrain. This algorithm has employed the standard narrowangle propagators in its implementation. The primary goal of this paper is to present the improved version of the algorithm based on wide-angle propagators, and to demonstrate the results of the comparison tests performed in some canonical scenarios, together with more complex scenarios involving variable terrains.
Subject Keywords
Mathematical model
,
Equations
,
Antennas
,
Propagation
,
Approximation algorithms
,
Approximation methods
URI
https://hdl.handle.net/11511/55377
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar