Real Time FPGA Implementation of Super Resolution for Infrared Cameras

2015-08-24
AKTUKMAK, Mehmet
Halıcı, Uğur
At present, the quality of image taken from infrared cameras is low compared to the other cameras because of manufacturing technology. Therefore, resolution enhancement processes are becoming more important for these cameras. Super resolution is a good approach to solve this resolution problem. In general, the systems that infrared cameras used require video processing to perform in real time. So, a suitable approach should be selected and implemented to work in real time. The computational load and processing time are big issues in this case. FPGAs are proven to be appropriate hardware devices for these types of works. Super resolution involves two parts as global motion estimation and high resolution image reconstruction. In this study, one suitable algorithm, namely as Projection Method (PM) is selected for global motion estimation. On the other hand, for high resolution image reconstruction part, Least Mean Square (LMS) algorithm is found to be suitable for real time implementation.

Suggestions

FPGA implementation of real time digital video super resolution for infrared cameras
Aktukmak, Mehmet; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2013)
At present, the quality of image taken from infrared cameras is low compared to the other cameras because of manufacturing technology. So, resolution enhancement processes are becoming more important for these cameras. Super resolution is a good approach to solve this resolution problem. In general, the systems that infrared cameras used require video processing to perform in real time. So, a suitable approach should be selected and implemented to work in real time. The computational load and processing tim...
Real-time FPGA firmware for VGA resolution infrared camera
Çevik, Kami; Akın, Tayfun; Department of Electrical and Electronics Engineering (2019)
Infrared cameras generally require pre-processing on raw image data in order to improve the output image quality. Raw output of the infrared cameras occupies a narrow part of the available dynamic range. Contrast enhancement is one of the pre-processing operations and used for improving dynamic range of the low contrast images. This thesis proposes an adaptive histogram equalization method for enhancing the contrast of long wavelength infrared camera output with 640×480 resolution and provides a FPGA implem...
Automatic tests for camera performance analysis
Hasarpa, Alican; Akar, Gözde; Department of Electrical and Electronics Engineering (2018)
The camera technology is consistently improving, with high definition, smartcameras being utilized all around the world. Because of the different quality of such cameras, the camera performance analysis plays a critical role for the end users in order to determine the real difference between the available alternatives. The image quality of a camera may be assessed visually using digitally generated test patterns in a controlled environment. The main purpose of this thesis is to automate this assessment and ...
Real-time single frame superresolution
Tarhan, Cem; Akar, Gözde; Department of Electrical and Electronics Engineering (2014)
A demand in real-time applications for superresolution increases as the surveillance and low resolution camera usage is spread for cost optimization. In this thesis two real-time superresolution algorithms have been proposed. The first algorithm (NDUID) is composed of non-dyadic upsampling cascade for smooth interpolation and an edge enhancement block that uses a non-blind deconvolution. Second algorithm (EDAT) starts with Total Variation decomposition. The structure component is interpolated with a fast ed...
Radiometric Camera Calibration of BiLSAT Small Satellite: Preliminary Results
Frıedrıch, Jurgen; Leloğlu, Uğur Murat; Tunalı, Erol (2006-02-16)
The studies on radiometric camera calibration of multispectral camera of the BiLSAT satellite is presented in this work. During the study, various dark images and flat-field images have been taken, and deviations from ideal has been investigated. Various sources of error have been studied and the non-homogeneous response of the CCD is explicitly modeled. Images have been corrected according to the models and the results have been discussed.
Citation Formats
M. AKTUKMAK and U. Halıcı, “Real Time FPGA Implementation of Super Resolution for Infrared Cameras,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54250.