Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An empirical expression for the determination of mean critical flow velocity in slurry transporting pipeline systems
Date
1999-09-10
Author
Göğüş, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
In this study, the effect of solid particle settling velocity on the mean critical mixture-flow velocity in a pipeline system is investigated. A graphical method proposed by Mitzmager (1964), for a quick and reliable calculation of particle-settling velocity, is used in the analysis. Following dimensional analysis applied on the main parameters of the problem the most suitable non-dimensional form of critical flow velocity is obtained from the application of regression analysis on the available data. Comparison of obtained equation with similar ones proposed by other researchers is given both in tabular and graphical forms. The expression given in this study estimates the mean critical flow velocity in a pipeline system much better than the other expressions.
URI
https://hdl.handle.net/11511/54260
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
A First-Order Linear Model for the Estimation of Detonation Velocity
Türker, Burhan Lemi (Informa UK Limited, 2011-01-01)
A linear multivariable model has been derived for the estimation of detonation velocity. Then, its two simplified forms, first-order linear models, have been proposed as estimators of detonation velocities of a large population of explosives having different skeletal structures. Then, the models are analyzed mathematically and regression equations are obtained and discussed. The first model possesses two independent variables E/M and density, whereas the second one is based on E/M only. The total energy (E)...
Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
A model for predicting vertical component peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped pseudospectral acceleration (PSA) for Europe and the Middle East
Ertuğrul, Zehra; Kale, Ozkan; SANDIKKAYA, MUSTAFA ABDULLAH (2017-07-01)
In this study, we present a ground-motion model for the vertical component of peak ground acceleration, peak ground velocity, and 5% damped pseudo acceleration response spectra at periods ranging from 0.01 to 4 s. The vertical model is based on the ground-motion models previously developed for the horizontal component and vertical-to-horizontal ratio of ground motion by Akkar et al. (Bull Earthq Eng 12:359-387, 2014a; 517-547, 2014b) rather than on an independent regression analysis of strong-motion data av...
Comparison of the overlapping lattice and thefinite element approaches for the prediction of the collapse state of concrete gravity dams
Soysal, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (null; 2017-10-11)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
Comparison of the Overlapping Lattice and the Finite Element Approaches for the Prediction of the Collapse State of Concrete Gravity Dams
Soysal Albostan, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (2017-10-13)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Göğüş, “An empirical expression for the determination of mean critical flow velocity in slurry transporting pipeline systems,” 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54260.