Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the Use of Shallow Water Equations in Hydraulics
Date
2017-01-01
Author
Iscen, Behiye Nilay
ÖKTEM, NURAY
Yilmaz, Burak
Aydın, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
Shallow water equations are widely used in inundation analysis and they are known to be successful in computation of floods over wide terrains. Flood propagation in between buildings in urban areas and flows around hydraulic structures such as bridges may not satisfy the assumptions of shallow flow and may display markedly more 3-Dimensional (3D) flow characteristics. However, for the convenience of fast numerical solutions, the shallow-current equations can also be used for such 3D flows and useful output may be obtained.
Subject Keywords
Flood
,
Inundation
,
Shallow water equations
,
Shock capturing solutions
,
Riemann solvers
URI
https://hdl.handle.net/11511/54361
Journal
TEKNIK DERGI
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Assessment of flood hazards due to overtopping and piping in Dalaman Akköprü Dam, employing both shallow water flow and diffusive wave equations
Yilmaz, Kutay; Darama, Yakup; Oruc, Yunus; Melek, Abiddin Berhan (2023-01-01)
This study was carried out to determine flood propagation using shallow water equations (SWEs) and diffusive wave equations (DWEs) to reveal how the flood modeling results differ in terms of flow depth, flow velocity, and hazard level. The solution methods were tested based on the hypothetical failure of the Dalaman Akköprü Dam resulting from two failure mechanisms: overtopping (OT) and piping (PP). A 2D hydraulic model was constructed using HEC-RAS to determine the propagation of flood waves due to the fai...
A stochastic approach in reserve estimation
Kök, Mustafa Verşan (Informa UK Limited, 2006-12-01)
Geostatistics and more especially stochastic modeling of reservoir heterogeneities are being increasingly considered by reservoir analysts and engineers for their potential in generating more accurate reservoir models together with usable measures of spatial uncertainty. Geostatistics provides a probabilistic framework and a toolbox for data analysis with an early integration of information. The uncertainty about the spatial distribution of critical reservoir parameters is modeled and transferred all the wa...
ADJOINT BASED SHAPE OPTIMIZATION OF SEMI-SUBMERGED INLETS AND DEVELOPMENT OF A NOVEL BOUNDARY LAYER DIVERTER
Küçük, Umut Can; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2022-12-28)
In this study, boundary layer ingesting and diverting submerged air inlets are design optimized with an adjoint-based optimization methodology based on RANS solu tions. The opensource SU2 software is employed for both RANS and adjoint solutions and for driving the gradient-based optimization. Total pressure recovery at the aerodynamic interface plane is taken as the main objective of the optimization, and the mass flow rate and the momentum distortion are closely monitored. It is first shown that the shape ...
Analytical solution for the propagation of finite crested long waves over a sloping beach
Yağmur, Ahmed Sabri; Kanoğlu, Utku; Department of Aerospace Engineering (2022-2-10)
The analytical solution of shallow water-wave equations, both linear and nonlinear, is widely used to provide an insightful understanding of the coastal effect of long waves. These solutions are generally carried out for two-dimensional (1 space + 1 time) propagation, even though there are a limited number of analytical solutions for the three-dimensional (2 space + 1 time) propagation. Three-dimensional propagation of long waves over a sloping beach is considered here. The analytical solution is obtained u...
Modelling the Dynamic Response of Pile Foundations in Performance Based Geotechnical Engineering Framework
Unutmaz, Berna; Gülerce, Zeynep (2016-06-26)
The objective of this study is to develop a performance-based earthquake engineering (PBEE) framework for the soil liquefaction-related hazards and estimate the levels of exceeding liquefaction related engineering demand parameters (EDPs) in a probabilistic manner. The post-cyclic lateral deformation at the pile head (x) is tried to be predicted from ground motion intensity measures (IMs) such as peak ground acceleration (PGA) and Arias Intensity (I a). Within this scope, a number of finite difference anal...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. N. Iscen, N. ÖKTEM, B. Yilmaz, and İ. Aydın, “On the Use of Shallow Water Equations in Hydraulics,”
TEKNIK DERGI
, pp. 7747–7764, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54361.