Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Exploration Studies with Ceramics and Glass
Date
2012-01-01
Author
Işıtman, Ödül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
251
views
0
downloads
Cite This
The underlying thought of Isitman's research is to merge ceramic as ceramic and glass as glass; as an example, to integrate the two materials, in the same kiln and without changing their structures. This paper explains exploration studies done to merge ceramics and glass.
URI
https://hdl.handle.net/11511/54370
Journal
CERAMICS-TECHNICAL
Collections
Department of Music and Fine Arts, Article
Suggestions
OpenMETU
Core
Usability of polylactide biopolymer as thermoplastic matrix for woven fiber composite laminates
Demirok, Gökberk; Kaynak, Cevdet; Department of Metallurgical and Materials Engineering (2022-4-28)
The first purpose of this study was, as the first time in the literature, to investigate usability of polylactide (PLA) biopolymer as the matrix of high-performance composite laminated structures having woven forms of glass and carbon fibers. For this purpose, 2-14 layers of 2x2 twill Carbon Fiber (CF) and 1x1 plain weave Glass Fiber (GF) forms were stacked by PLA powders followed by consolidation of these layers by compression molding technique. After conducting various tests and analysis it was observed t...
Glass fiber reinforced sealants for solid oxide fuel cells
Timurkutluk, Bora; Altan, Tolga; Celik, Selahattin; Timurkutluk, Cigdem; PALACI, Yüksel (Elsevier BV, 2019-07-05)
Novel sealants for solid oxide fuel cells are developed by addition of glass fiber into glass ceramic as a reinforcement material. Various sealants including three different fiberglass types and four different structural designs are fabricated. The mechanical and sealing performances of the sealants are investigated via tensile and short stack leakage tests, respectively. The tensile tests reveal that the fracture strength of the sealants varies depending on the type and number of the glass fiber used. In g...
Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils
Dogru, Itir Bakis; Durukan, Mete Batuhan; Turel, Onur; Ünalan, Hüsnü Emrah (2016-06-01)
In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor...
Studies on visual detection and surface modification testing of glass microfiber filter paper based biosensor
Adiguzel, Yekbun; Külah, Haluk (Elsevier BV, 2014-04-15)
Glass microfibers are commonly used as biomolecule adsorption media, as structural or disposable components of the optical biosensors. While any improvement in these components are appreciated, utilizing basic tools of traditional approaches may lead to original sensor opportunities as simple, functional designs that can be easily disseminated. Following this pursuit, surface modification of glass microfiber paper surface was performed by 3-aminopropyltriethoxysilane (APTES) and resulting improvement in the...
Improvement of fracture resistance in a glass matrix optomechanical composite reinforced by Al2O3-ZrO2 minicomposite
Dericioğlu, Arcan Fehmi; Kagawa, Y. (null; 2002-12-31)
The possibility of obtaining fracture resistant optically transparent ceramic matrix optomechanical composites was studied on a continuous Al2O3-ZrO2 minicomposite-reinforced glass matrix model composite. A mesh-like reinforcement structure composed of unidirectional minicomposites was determined to be effective in improving the fracture resistance of the brittle matrix with a small expense in its optical transparency. With decreasing minicomposite to minicomposite spacing, the fracture resistance of the op...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Işıtman, “Exploration Studies with Ceramics and Glass,”
CERAMICS-TECHNICAL
, pp. 58–61, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54370.