Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stochastic Dynamic Programming Based Resource Allocation for Multi Target Tracking for Electronically Steered Antenna Radar
Date
2015-05-19
Author
Uzun, Caglar
Demirekler, Mübeccel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
In this work, the concept of sensor management is introduced and stochastic dynamic programming based resource allocation approach is proposed to track multi target. The core of this approach is to use Lagrange relaxation for decreasing the state space dimension. By this approximation, the overall problem is separated into components instead of using joint Markov model to optimize large scale stochastic control problem. The aim of this study is to adaptively allocate radar resources in an optimal way in order to maintain track qualities for multi-target case. Time scale is divided into two levels that are called as micro management and macro management. During this work, we deal with macro management part that aims to construct a policy which is optimal for a given objective function under the resource constraints. In this work, some rule based techniques are added into simulation. The performance of algorithm is analyzed on the average number of update decision and average number of target drops in time horizon.
Subject Keywords
Resource
,
Markov decision process
,
Lagrange relaxation
,
Dynamic programming
,
Sensor scheduling
,
Sensor management
URI
https://hdl.handle.net/11511/54374
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Stochastic dynamic programming based resource allocation for multi target tracking for electronically steered antenna radar /
Uzun, Çağlar; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2015)
In this work, the concept of sensor management is introduced and stochastic dynamic programming based resource allocation approach is proposed to track multiple targets. The core of this approach is to use Lagrange relaxation for decreasing the state space dimension. By this approximation, the overall problem is separated into components instead of using joint Markov model to optimize large scale stochastic control problem. The aim of this study is to adaptively allocate radar resources in an optimal way in...
Dissimilarity maximization method for real-time routing of parts in random flexible manufacturing systems
Saygin, C; Kilic, SE (Springer Science and Business Media LLC, 2004-04-01)
This paper presents a dissimilarity maximization method (DMM) for real-time routing selection and compares it via simulation with typical priority rules commonly used in scheduling and control of flexible manufacturing systems (FMSs). DMM aims to reduce the congestion in the system by selecting a routing for each part among its alternative routings such that the overall dissimilarity among the selected routings is maximized. In order to evaluate the performance of DMM, a random FMS, where the product mix is...
Implicit monolithic parallel solution algorithm for seismic analysis of dam-reservoir systems
Özmen, Semih; Kurç, Özgür; Department of Civil Engineering (2016)
This research mainly focuses on developing a computationally scalable and efficient solution algorithm that can handle linear dynamic analysis of dam-reservoir interaction problem. Lagrangian fluid finite elements are utilized and compressibility and viscosity of the fluid are taken into consideration during the reservoir modeling. In order to provide computational scalability and efficiency, domain decomposition methods implemented with parallel computing approaches such as Finite Element Tearing and Inter...
Multi–target implementation of a domain specific language for extended feature models
Demirtaş, Görkem; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2018)
Translation of feature models to constraint logic programs is an effective method to enable their automated analysis using existing constraint solvers. More flexibility can be offered for building and application of analysis operations on extended feature models by providing a syntax and mechanism for interfacing the host solver with user defined constraint predicates. These constraints, such as global constraints, can be provided by the constraint solver runtime or by the translator itself as a part of the...
Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market
Savku, E.; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-08-01)
We apply dynamic programming principle to discuss two optimal investment problems by using zero-sum and nonzero-sum stochastic game approaches in a continuous-time Markov regime-switching environment within the frame work of behavioral finance. We represent different states of an economy and, consequently, investors' floating levels of psychological reactions by aD-state Markov chain. The first application is a zero-sum game between an investor and the market, and the second one formulates a nonzero-sum sto...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Uzun and M. Demirekler, “Stochastic Dynamic Programming Based Resource Allocation for Multi Target Tracking for Electronically Steered Antenna Radar,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54374.