Robust Design for MISO SWIPT System with Artificial Noise and Cooperative Jamming

Chu, Zheng
Le, Tuan Anh
Nguyen, Huan X.
Karamanoglu, Mehmet
Zhu, Zhengyu
Nallanathan, Arumugam
Ever, Enver
Yazıcı, Adnan
Considering simultaneous wireless information and power transfer (SWIPT), we study a multiple-input-single-output (MISO) secrecy channel which consists of a multi-antenna transmitter and a cooperative jammer (CJ), multiple multi-antenna energy receivers (ERs), i.e., potential eavesdroppers, and multiple single-antenna co-located receivers (CRs). Both transmitter and CJ send the intend signal with artificial noise (AN) and jamming signal to interfere with the ERs. All receivers (CRs and ERs) adopt a power splitter to decode information and harvest power simultaneously. We exploit AN and CJ to facilitate efficient wireless energy transfer and secure transmission. Our aim is to maximize the minimum harvested energy among all ERs and CRs subject to the total power constraints at the transmitter and CJ while guaranteeing the minimum secrecy rate for each CR above its requirement. By incorporating norm-bounded channel uncertainty model, we propose a joint design of robust secure transmission. The original problem is solved by a two-step approach. In the first step, the proposed problem is reformulated as a sequence of semidefinite programs (SDPs). In the second step, the proposed problem can be handled by one-dimensional search to attain the optimal solution. Simulation results indicate that the performance of the proposed scheme outperforms that of separated AN-aided or CJ-aided scheme.


Demir, Özlem Tuğfe; Tuncer, Temel Engin (2015-09-04)
In this paper, simultaneous wireless information and power transfer (SWIPT) concept is introduced for multi group multicast beamforming. Each user has a single antenna and a power splitter which divides the radio frequency (RF) signal into two for both information decoding and energy harvesting. The aim is to minimize the total transmission power at the base station while satisfying both signal-to-interference-plus- noise-ratio (SINR) and harvested power constraints at each user. Unlike unicast and certain ...
Secure Wireless Powered and Cooperative Jamming D2D Communications
Chu, Zheng; Nguyen, Huan X; Le, Tuan Anh; Karamanoglu, Mehmet; EVER, ENVER; Yazıcı, Adnan (2017-10-01)
This paper investigates a secure wireless-powered device-to-device (D2D) communication network in the presence of multiple eavesdroppers, where a hybrid base station (BS) in a cellular network not only provides power wirelessly for the D2D transmitter to guarantee power efficiency for the D2D network, but also serves as a cooperative jammer to interfere with the eavesdroppers. The cellular and D2D networks can belong to different service providers, which means that the D2D transmitter would need to pay for ...
Design, analysis and implementation of a 50 w wireless charger of a charging vest battery
Eren, Merih; Bostancı, Emine; Department of Electrical and Electronics Engineering (2019)
Wireless power transfer (WPT) has been a very popular research topic for a variety of applications with power ratings ranging from few watts to several kilowatts. High power levels are mostly used in electric vehicle charging applications whereas lower power level applications are mostly in household appliances, wearable devices and medical implants. Topology, geometries of the transferring and receiving coils and their relative positions are fundamental parts that affect performance of WPT systems. In WPT ...
Energy Efficient Transmission Scheduling for Channel-adaptive Wireless Energy Transfer
Bacınoğlu, Baran Tan; Kaya, Onur; Uysal, Elif (2018-04-18)
We consider a fading communication link where the transmitter is powered by the receiver through wireless energy transfer (WET). A typical application scenario for this is the transmitter being a simple sensor while the demand for data is created by an application running at the receiver side and pulled from the transmitter as needed. We formulate two offline transmission scheduling problems: the transmitter-centric WET transmission optimization problem, where the schedule is computed by the transmitter, an...
Blind channel estimation based on the Lloyd-Max algorithm innarrowband fading channels and jamming
Dizdar, Onur; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2011)
In wireless communications, knowledge of the channel coefficients is required for coherent demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation points for the received signal using an iterative least squares approach. The algorithm is investigated for fast-frequency hopping systems with small block lengths and operating under partial-band and partial-time jamming for both detecti...
Citation Formats
Z. Chu et al., “Robust Design for MISO SWIPT System with Artificial Noise and Cooperative Jamming,” 2017, Accessed: 00, 2020. [Online]. Available: