From a Modified Ambrosio-Tortorelli to a Randomized Part Hierarchy Tree

2011-06-02
We demonstrate the possibility of coding parts, features that are higher level than boundaries, using a modified AT field after augmenting the interaction term of the AT energy with a non-local term and weakening the separation into boundary/not-boundary phases. The iteratively extracted parts using the level curves with double point singularities are organized as a proper binary tree. Inconsistencies due to non-generic configurations for level curves as well as due to visual changes such as occlusion are successfully handled once the tree is endowed with a probabilistic structure. The work is a step in establishing the AT function as a bridge between low and high level visual processing.

Suggestions

A coupled numerical scheme of dual reciprocity BEM with DQM for the transient elastodynamic problems
Bozkaya, Canan (Wiley, 2008-11-12)
The two-dimensional transient elastodynamic problems are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in spatial domain with the differential quadrature method (DQM) in time domain. The DRBEM with the fundamental solution of the Laplace equation transforms the domain integrals into the boundary integrals that contain the first- and the second-order time derivative terms. Thus, the application of DRBEM to elastodynamic problems results in a system of second...
A unified approach for the formulation of interaction problems by the boundary element method
Mengi, Y; Argeso, H (Wiley, 2006-04-30)
A unified formulation is presented, based on boundary element method, in a form suitable for performing the interaction analyses by substructure method for solid-solid and soil-structure problems. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices simultaneously at a single step in terms of system matrices of the boundary element method without solving any special problem, such as, unit displacement or load problem, as required in conventional methods....
A New modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoğlu, Erhan; Özgüven, Hasan Nevzat; Ciğeroğlu, Ender; Department of Mechanical Engineering (2017)
In this thesis, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the ...
A local discontinuous Galerkin method for Dirichlet boundary control problems
Yücel, Hamdullah (null; 2018-10-20)
In this paper, we consider Dirichlet boundary control of a convection-diffusion equation with L 2 4 – 5 boundary controls subject to pointwise bounds on the control posed on a two dimensional convex polygonal domain. 6 We use the local discontinuous Galerkin method as a discretization method. We derive a priori error estimates for 7 the approximation of the Dirichlet boundary control problem on a polygonal domain. Several numerical results are 8 provided to illustrate the theoretical results.
APPROACH TO THE SHIFTED 1/N EXPANSION FOR SPIN-1/2 RELATIVISTIC PARTICLE
MUSTAFA, O; Sever, Ramazan (1993-01-01)
A different approach to the shifted 1/N expansion method is developed to deal with the Dirac particle trapped in a spherically symmetric potential. The main aspects of our approach are to expand the energy term in a perturbative form and to determine the parameters involved without any approximation. While the formalism is developed for spin-1/2 particles in any spherically symmetric potential, it is applied to the Coulomb case for testing. The calculations are carried out to the third-order correction of t...
Citation Formats
Z. S. Tarı, “From a Modified Ambrosio-Tortorelli to a Randomized Part Hierarchy Tree,” 2011, vol. 6667, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54541.