Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hyperspectral Unmixing Based Analysis of Forested Areas
Date
2015-05-19
Author
Başkurt, Nur Didem
Omruuzun, Fatih
Çetin, Yasemin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
This study aims to extract the planted regions in partially forested area by analyzing the hyperspectral remote sensing images acquired with airborne platforms. The proposed study utilizes the endmember signatures obtained from hyperspectral unmixing algorithms in order to classify the image pixels. The classification algorithm selects the endmember with highest spectral vegetation characteristic, and associates this endmember with the planted area pixels. The algorithm is tested on a scene covering METU Ankara campus area that is acquired by high resolution hyperspectral push-broom sensor operating in visible and NIR range of the electromagnetic spectrum on October, 22 2014.
Subject Keywords
Hyperspectral imaging
,
Remote sensing
,
Forest detection
,
Hyperspectral unmixing
URI
https://hdl.handle.net/11511/54641
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
UTILIZING HYPERSPECTRAL REMOTE SENSING IMAGERY FOR AFFORESTATION PLANNING OF PARTIALLY COVERED AREAS
Omruuzun, Fatih; Baskurt, Didem Ozisik; Daglayan, Hazan; Çetin, Yasemin (2015-09-23)
In this study, a supportive method for afforestation planning process of partially forested areas using hyperspectral remote sensing imagery has been proposed. The algorithm has been tested on a scene covering METU campus area that is acquired by high resolution hyperspectral push-broom sensor operating in visible and NIR range of the electromagnetic spectrum. The main contribution of this study to the literature is segmentation of partially forested regions with a semi-supervised classification of specific...
Shadow Removal from VNIR Hyperspectral Remote Sensing Imagery with Endmember Signature Analysis
Omruuzun, Fatih; Baskurt, Didem Ozisik; Daglayan, Hazan; Çetin, Yasemin (2015-04-22)
This study aims to develop an effective regional shadow removal algorithm using rich spectral information existing in hyperspectral imagery. The proposed method benefits from spectral similarity of shadow and neighboring nonshadow pixels regardless of the intensity values. Although the shadow area has lower reflectance values due to inadequacy of incident light, it is expected that this area contains similar spectral characteristics with nonshadow area. Using this assumption, the endmembers in both shadowed...
HYPERSPECTRAL UNMIXING BASED VEGETATION DETECTION WITH SEGMENTATION
Özdemir, Okan Bilge; Soydan, Hilal; Çetin, Yasemin; Duzgun, Sebnem (2016-07-15)
This paper presents a vegetation detection application with semi-supervised target detection using hyperspectral unmixing and segmentation algorithms. The method firstly compares the known target spectral signature from a generic source such as a spectral library with each pixel of hyperspectral data cube employing Spectral Angle Mapper (SAM) algorithm. The pixel(s) with the best match are assumed to be the most likely target vegetation locations. The regions around these potential target locations are furt...
Deep convolutional neural networks for airport detection in remote sensing images
Budak, Umit; Sengur, Abdulkadir; Halıcı, Uğur (2018-05-05)
This study investigated the use of deep convolutional neural networks (CNNs) in providing a solution for the problem of airport detection in remote sensing images (RSIs). In recent years, Deep CNNs have gained much attention with numerous applications having been undertaken in the area of computer vision. Researchers generally approach airport detection as a pattern recognition problem, in which first various distinctive features are extracted, and then a classifier is adopted to detect airports. CNNs not o...
Dry Dock Detection in Satellite Images with Representation Learning
Aktaş, Ümit Ruşen; Firat, Orhan; Yarman Vural, Fatoş Tunay (2013-04-26)
In this study, we propose a method to detect dry docks, a harbour man-made object which is hard to recognize, using representation learning in satellite images. Dry docks are coastal structures which may include ships for repairing purposes, and they exist in harbour regions. The search space is pruned by making use of two low-level features that invariantly define docks, and remaining samples are used to train a representation learning system. Experimental results suggest that classification methods using ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. D. Başkurt, F. Omruuzun, and Y. Çetin, “Hyperspectral Unmixing Based Analysis of Forested Areas,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54641.