Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Empirical Proof of Concept for TE Generation in Mobile Computers
Date
2012-12-05
Author
Denker, Reha
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
Thermoelectric (TE) module integration into a mobile computer has been experimentally investigated in this paper for its energy harvesting opportunities. For this purpose, a detailed Finite Element Analysis (FEA) model was constructed for thermal simulations. The model outputs were then correlated with the thermal validation results of the target system. A suitable "warm spot" has been selected, based on the FEA model, to integrate a commercial TE micro-module inside the system with minimum or no notable impact to the system performance, as measured by thermal changes in the system. The prediction was validated by integrating a TE micro-module to the mobile system under test. Measured TE power generation power density in the carefully selected region of the heat pipe was around 1.26 mW/cm(3) with high CPU load and no notable degradation in system performance.
Subject Keywords
Energy scavenging
,
Thermoelectric conversion
,
Sustainable energy systems
,
Thermal modeling
,
Seebeck effect
URI
https://hdl.handle.net/11511/54748
Conference Name
International Conference on Energy Aware Computing
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Empirically Based Methodology for Thermoelectric Generation in Notebook Systems
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2011-12-02)
Thermoelectric (TE) energy scavenging in high performance microelectronic systems has not been sufficiently developed in the past for practical use due to lack of methodology to minimize the impact of such power generation on performance. This paper describes an empirically based method to enable harvesting of excess heat with examples from ongoing work. The scheme involves detailed characterization of TE modules and notebook systems, along with co-development of correlated system models for the optimizatio...
Composite index for benchmarking local energy systems of Mediterranean port cities
Kılkış, Şiir (2015-12-01)
Benchmarking the performance of local energy systems requires an integrated approach. This paper develops a composite index that consists of a unique set of 7 dimensions and 35 main indicators. The SDEWES (Sustainable Development of Energy, Water, and Environment Systems) Index is applied to a sample of 22 Mediterranean port cities. The index integrates energy and CO2 emissions data from SEAP (Sustainable Energy Action Plans). The values of the indicators are aggregated based on the Min-Max method for a fin...
Cloud-based Optimal Energy Scheduling of Photovoltaics and Electric Vehicle-integrated Community Microgrids
Zehir, Mustafa Alparslan; Tufan Dogan, Osman; Merdanoglu, Hakan; Yakici, Ertan; Duran, Serhan; Can Akyildirim, Hayri (2022-01-01)
© 2022 IEEE.Community microgrid is one of the promising pathways to achieve higher levels of penetration of distributed generation from intermittent renewables and energy storage, further electrify heat and transport and enable active energy customers. Optimal energy scheduling of wide range and large number of flexible asset, using operational information from stakeholders (such dynamic pricing rates) and relying on customer preferences has been a processing power intensive major challenge. The inconsisten...
Experimental Analysis and FPGA Implementation of the Real Valued Time Delay Neural Network Based Digital Predistortion
Yesil, Soner; Sen, Cansu; Yılmaz, Ali Özgür (2019-01-01)
This paper presents an FPGA implementation of the Real Valued Time Delay Neural Network (RVTDNN) based digital predistortion with a very low resource utilization and high throughput. The implementation exploits efficient utilization of FPGA primitives and approximation of activation functions that can be realized with simple logic operations. The proposed modifications and constraints on the algorithms have been decided and verified based on a closed-loop adaptive hardware setup including RFHIC RWP03040-1H ...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Denker, A. Muhtaroglu, and H. Külah, “Empirical Proof of Concept for TE Generation in Mobile Computers,” presented at the International Conference on Energy Aware Computing, METU NCC, Cyprus, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54748.