Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TEMPORALLY CONSISTENT LAYER DEPTH ORDERING VIA PIXEL VOTING FOR PSEUDO 3D REPRESENTATION
Date
2009-05-06
Author
Turetken, Engin
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
A new region-based depth ordering algorithm is proposed based on the segmented motion layers with affine motion models. Starting from an initial set of layers that are independently extracted for each frame of an input sequence, relative depth order of every layer is determined following a bottom-to-top approach from local pair-wise relations to a global ordering. Layer sets of consecutive time instants are warped in two opposite directions in time to capture pair-wise occlusion relations of neighboring layers in the form of pixel voting statistics. Global depth order of layers is estimated by mapping the pair-wise relations to a directed acyclic graph and solving the longest path problem via a breadth-first search strategy. Temporal continuity is enforced both at the region segmentation and depth ordering stages to achieve temporally coherent layer support maps and depth order relations. Experimental results show that the proposed algorithm yields quite promising results even on dynamic scenes with multiple motions.
Subject Keywords
21/2D representation
,
Pseudo 3D representation
,
Depth ordering
,
Layered representation
,
Motion segmentation
,
Affine motion model
URI
https://hdl.handle.net/11511/54830
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
MULTI-RESOLUTION MOTION ESTIMATION FOR MOTION COMPENSATED FRAME INTERPOLATION
Guenyel, Bertan; Alatan, Abdullah Aydın (2010-09-29)
A multi-resolution motion estimation scheme is proposed for tracking of the true 2D motion in video sequences for motion compensated image interpolation. The proposed algorithm utilizes frames with different resolutions and adaptive block dimensions for efficient representation of motion. Firstly, motion vectors for each block are assigned as a result of predictive search in each pass. Then, the outlier motion vectors are detected and corrected at the end of each pass. Simulation results with respect to dif...
Rate-distortion based piecewise planar 3d scene geometry representation
Imre, Evren; Alatan, Abdullah Aydın; GÜDÜKBAY, UĞUR (2007-09-19)
This paper proposes a novel 3D piecewise planar reconstruction algorithm, to build a 3D scene representation that minimizes the intensity error between a particular frame and its prediction. 3D scene geometry is exploited to remove the visual redundancy between frame pairs for any predictive coding scheme. This approach associates the rate increase with the quality of representation, and is shown to be rate-distortion efficient by the experiments.
3-D motion estimation of rigid objects for video coding applications using an improved iterative version of the E-matrix method
Alatan, Abdullah Aydın (1998-02-01)
As an alternative to current two-dimensional (2-D) motion models, a robust three-dimensional (3-D) motion estimation method is proposed to be utilized in object-based video coding applications, Since the popular E-matrix method is well known for its susceptibility to input errors, a performance indicator, which tests the validity of the estimated 3-D motion parameters both explicitly and implicitly, is defined. This indicator is utilized within the RANSAC method to obtain a robust set of 2-D motion correspo...
Multi-image region growing for integrating disparity maps
Leloglu, UĞUR MURAT; Halıcı, Uğur (1999-01-01)
In this paper, a multi-image region growing algorithm to obtain planar 3-D surfaces in the object space from multiple dense disparity maps, is presented. A surface patch is represented by a plane equation and a set of pixels in multiple images. The union of back projections of all pixels in the set onto the infinite plane, forms the surface patch. Thanks to that hybrid representation of planar surfaces, region growing (both region aggregation and region merging) is performed on all images simultaneously. Pl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Turetken and A. A. Alatan, “TEMPORALLY CONSISTENT LAYER DEPTH ORDERING VIA PIXEL VOTING FOR PSEUDO 3D REPRESENTATION,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54830.