Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An experimental comparison of symbolic and neural learning algorithms
Date
1998-04-23
Author
Baykal, Nazife
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
197
views
0
downloads
Cite This
In this paper comparative strengths and weaknesses of symbolic and neural learning algorithms are analysed. Experiments comparing the new generation symbolic algorithms and neural network algorithms have been performed using twelve large, real-world data sets.
Subject Keywords
Inductive learning
,
Neural networks
,
Classification
URI
https://hdl.handle.net/11511/55135
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
On the analysis of deep convolutional neural networks applied to building detection in satellite images
Karagöz, Batuhan; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2015)
Deep Learning has gained much interest recently, probably induced by the re- quirements to learn more complex and abstract concepts. As concepts to be learned become more abstract, their regions in the raw input space also become highly variational. In many cases, shallow architectures fail to learn highly varia- tional functions. One area of interest where concepts to be learned are complex is remote sensing. In this thesis, performance and suitability of deep architectures for recognition of building patc...
A neural network approach for approximate force response analyses of a bridge population
Hasançebi, Oğuzhan (2013-03-01)
In this paper, artificial neural networks (ANNs) are used to develop an efficient method for rapid and approximate force response analyses of a bridge population. The single-span reinforced concrete T-beam bridge population in Pennsylvania State is taken as a particular case study. First, a statistical analysis is conducted to examine implicit and explicit dependencies between various geometrical and structural parameters of the bridges, and the governing bridge parameters are identified along with their ra...
Automatic target recognition of quadcopter type drones from moderately-wideband electromagnetic data using convolutional neural networks
Güneri, Rutkay; Sayan, Gönül; Department of Electrical and Electronics Engineering (2022-12-15)
In this thesis, the classifier design approach based on “Learning by a Convolutional Neural Network (CNN)” will be applied to two different target library/data sets; an ultra-wideband simulation data (from 37 MHz to 19.1 GHz) obtained for a target library of four dielectric spheres, and a moderately-wide band measurement data (from 3.1 to 4.8 GHz) obtained for a target library of four quadcopter type unmanned aerial vehicles (UAVs). While the bandwidth of simulation data for spherical targets is about nine ...
A systematic study of probabilistic aggregation strategies in swarm robotic systems
Soysal, Onur; Şahin, Erol; Department of Computer Engineering (2005)
In this study, a systematic analysis of probabilistic aggregation strategies in swarm robotic systems is presented. A generic aggregation behavior is proposed as a combination of four basic behaviors: obstacle avoidance, approach, repel, and wait. The latter three basic behaviors are combined using a three-state finite state machine with two probabilistic transitions among them. Two different metrics were used to compare performance of strategies. Through systematic experiments, how the aggregation performa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Baykal, “An experimental comparison of symbolic and neural learning algorithms,” 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55135.