Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
On the analysis of deep convolutional neural networks applied to building detection in satellite images
Download
index.pdf
Date
2015
Author
Karagöz, Batuhan
Metadata
Show full item record
Item Usage Stats
4
views
3
downloads
Deep Learning has gained much interest recently, probably induced by the re- quirements to learn more complex and abstract concepts. As concepts to be learned become more abstract, their regions in the raw input space also become highly variational. In many cases, shallow architectures fail to learn highly varia- tional functions. One area of interest where concepts to be learned are complex is remote sensing. In this thesis, performance and suitability of deep architectures for recognition of building patches in satellite images are analyzed and discussed. Main architecture that is the subject of interest in this thesis is Deep Convo- lutional Neural Networks. Deep Convolutional Neural Networks has proven to be state of the art machine learning systems in several pattern recognition tasks such as bank check reading, handwriting recognition and face detection. We fo- cus on a particular CNN architecture and trained a Deep Convolutional Neural Network with fully supervised stochastic gradient descent. We obtained a clas- sification accuracy of 90 percent on average which is promising for deep learning implementations on the Remote Sensing Domain. Several measurements on the penultimate layer activations has been employed to reveal insights about what the models learn. Despite seemingly high accuracy results, these measurements put forward that the architecture we pick is unable to learn high level features.
Subject Keywords
Remote sensing.
,
Artificial intelligence.
,
Remote-sensing images.
,
Neural networks (Computer science).
URI
http://etd.lib.metu.edu.tr/upload/12618988/index.pdf
https://hdl.handle.net/11511/25025
Collections
Graduate School of Natural and Applied Sciences, Thesis