Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Unsupervised Learning of Object Affordances for Planning in a Mobile Manipulation Platform
Date
2011-05-13
Author
Ugur, Emre
Şahin, Erol
Oztop, Erhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
153
views
0
downloads
Cite This
In this paper, we use the notion of affordances, proposed in cognitive science, as a framework to propose a developmental method that would enable a robot to ground symbolic planning mechanisms in the continuous sensory-motor experiences of a robot. We propose a method that allows a robot to learn the symbolic relations that pertain to its interactions with the world and show that they can be used in planning. Specifically, the robot interacts with the objects in its environment using a pre-coded repertoire of behaviors and records its interactions in a triple that consist of the initial percept of the object, the behavior applied and its effect, defined as the difference between the initial and the final percept. The method allows the robot to learn object affordance relations which can be used to predict the change in the percept of the object when a certain behavior is applied. These relations can then be used to develop plans using forward chaining. The method is implemented and evaluated on a mobile robot system with limited object manipulation capabilities. We have shown that the robot is able to learn the physical affordances of objects from range images and use them to build symbols and relations that can be used in making multi-step predictions about the affordances of objects and achieve complex goals.
URI
https://hdl.handle.net/11511/55216
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Unsupervised Learning of Affordance Relations on a Humanoid Robot
Akgun, Baris; Dag, Nilguen; Bilal, Tahir; Atil, Ilkay; Şahin, Erol (2009-09-16)
In this paper, we study how the concepts learned by a robot can be linked to verbal concepts that humans use in language. Specifically, we develop a simple tapping behaviour on the iCub humanoid robot simulator and allow the robot to interact with a set of objects of different types and sizes to learn affordance relations in its environment. The robot records its perception, obtained from a range camera, as a feature vector, before and after applying tapping on an object. We compute effect features by subtr...
The learning and use of traversability affordance using range images on a mobile robot
Ugur, Emre; Dogar, Mehmet R.; Cakmak, Maya; Şahin, Erol (2007-04-14)
We are interested in how the concept of affordances can affect our view to autonomous robot control, and how the results obtained from autonomous robotics can be reflected back upon the discussion and studies on the concept of affordances. In this paper, we studied how a mobile robot, equipped with a 3D laser scanner, can learn to perceive the traversability affordance and use it to wander in a room filled with spheres, cylinders and boxes. The results showed that after learning, the robot can wander around...
Recurrent Slow Feature Analysis for Developing Object Permanence in Robots
Çelikkanat, Hande; Şahin, Erol; Kalkan, Sinan (null; 2013-11-03)
In this work, we propose a biologically inspired framework for developing object permanence in robots. In particular, we build upon a previous work on a slowness principle-based visual model (Wiskott and Sejnowski, 2002), which was shown to be adept at tracking salient changes in the environment, while seamlessly “understanding” external causes, and self-emerging structures that resemble the human visual system. We propose an extension to this architecture with a prefrontal cortex-inspired recurrent loop th...
GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics
Ferrante, Eliseo; Turgut, Ali Emre; DuenezGuzman, Edgar; Wenseleers, Tom (2013-07-10)
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to ...
Collective gradient perception with a flying robot swarm
Karaguzel, Tugay Alperen; Turgut, Ali Emre; Eiben, A. E.; Ferrante, Eliseo (2022-10-01)
In this paper, we study the problem of collective and emergent sensing with a flying robot swarm in which social interactions among individuals lead to following the gradient of a scalar field in the environment without the need of any gradient sensing capability. We proposed two methods-desired distance modulation and speed modulation-with and without alignment control. In the former, individuals modulate their desired distance to their neighbors and in the latter, they modulate their speed depending on th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ugur, E. Şahin, and E. Oztop, “Unsupervised Learning of Object Affordances for Planning in a Mobile Manipulation Platform,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55216.