GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics

Ferrante, Eliseo
Turgut, Ali Emre
DuenezGuzman, Edgar
Wenseleers, Tom
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to modify, and to tease apart the inherent principles that lead to the desired collective behavior. In contrast, our representation is based on completely readable and analyzable individual-level rules that lead to a desired collective behavior. The core of our method is a grammar that can generate a rich variety of collective behaviors. We test GESwarm by evolving a foraging strategy using a realistic swarm robotics simulator. We then systematically compare the evolved collective behavior against an hand-coded one for performance, scalability and flexibility, showing that collective behaviors evolved with GESwarm can outperform the hand-coded one.


Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging
Arvin, Farshad; Watson, Simon; Turgut, Ali Emre; Espinosa, Jose; Krajnik, Tomas; Lennox, Barry (2018-12-01)
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this p...
Gür, Emre; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-9-09)
In this thesis, the development of a social, reinforcement learning-based aggregation method is covered together with the development of a mobile robot swarm of Kobot- Tracked (Kobot-T) robots. The proposed method is developed to improve efficiency in low robot density swarm environments especially when the aggregated area is difficult to find. The method is called Social Reinforcement Learning, and Landmark-Based Aggregation (SRLA) and it is based on Q learning. In this method, robots share their Q tables ...
A developmental framework for learning affordances
Uğur, Emre; Şahin, Erol; Öztop, Erhan; Department of Computer Engineering (2010)
We propose a developmental framework that enables the robot to learn affordances through interaction with the environment in an unsupervised way and to use these affordances at different levels of robot control, ranging from reactive response to planning. Inspired from Developmental Psychology, the robot’s discovery of action possibilities is realized in two sequential phases. In the first phase, the robot that initially possesses a limited number of basic actions and reflexes discovers new behavior primiti...
Self-organized flocking in mobile robot swarms
Turgut, Ali Emre; Gökçe, Fatih; Şahin, Erol (2008-09-01)
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavi...
Evolving self-organizing behaviors for a swarm-bot
Dorigo, M; Trianni, V; Şahin, Erol; Gross, R; Labella, TH; Baldassarre, G; Nolfi, S; Deneubourg, JL; Mondada, F; Floreano, D; Gambardella, LM (2004-09-01)
In this paper, we introduce a self-assembling and self-organizing artifact, called a swarm-bot, composed of a swarm of s-bots, mobile robots with the ability to connect to and to disconnect from each other. We discuss the challenges involved in controlling a swarm-bot and address the problem of synthesizing controllers for the swarm-bot using artificial evolution. Specifically, we study aggregation and coordinated motion of the swarm-bot using a physics-based simulation of the system. Experiments, using a s...
Citation Formats
E. Ferrante, A. E. Turgut, E. DuenezGuzman, and T. Wenseleers, “GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics,” 2013, Accessed: 00, 2020. [Online]. Available: