Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A NEW ROBUST OPTIMIZATION TOOL APPLIED ON FINANCIAL DATA
Date
2013-07-01
Author
Ozmen, A.
Weber, Gerhard Wilhelm
Karimov, A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
Recent financial crises, with an increased volatility and, hence, uncertainty factors, have introduced a high "noise" into the data taken from the financial sectors and overall from any data related to the financial markets, so that the known statistical models do not give trustworthy results. As we know the solutions of the optimization problem can show a remarkable sensitivity to perturbations, coming from the data, in the parameters of the problem. To overcome this kind of difficulties, the model identification problem has been generalized by including the existence of uncertainty with respect to future scenarios through Conic Multivariate Adaptive Regression Splines (CMARS), whose data are assumed to contain certain information with respect to input variables. Then, with the help of robust optimization which can deal with a wider data uncertainty, CMARS has been robustified and named as Robust CMARS (RCMARS). We decrease the estimation variance by using robustification in CMARS. In contrast to early studies, where RCMARS was presented in theory and method and illustrated with a numerical example, in this study, we present RCMARS results for real-world data from financial markets, particularly, from the Istanbul Stock Exchange, Turkish and US economy, showing that RCMARS can generate more accurate models with a smaller variance.
Subject Keywords
Regression
,
Uncertainty
,
Robust optimization
,
CMARS
,
RCMARS
,
Financial market
URI
https://hdl.handle.net/11511/55224
Journal
PACIFIC JOURNAL OF OPTIMIZATION
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
The new robust conic GPLM method with an application to finance: prediction of credit default
Ozmen, Ayse; Weber, Gerhard Wilhelm; Cavusoglu, Zehra; DEFTERLİ, ÖZLEM (2013-06-01)
This paper contributes to classification and identification in modern finance through advanced optimization. In the last few decades, financial misalignments and, thereby, financial crises have been increasing in numbers due to the rearrangement of the financial world. In this study, as one of the most remarkable of these, countries' debt crises, which result from illiquidity, are tried to predict with some macroeconomic variables. The methodology consists of a combination of two predictive regression model...
Empirical comparison of portfolio risk diversification algorithms
Yerli, Çiğdem; Kestel, Sevtap Ayşe; Schindler, Nilüfer; Department of Financial Mathematics (2018)
The enhanced correlations during global financial crisis has revealed that simple asset allocation portfolios prove to be not well-diversified across different risk factors, which makes the risk based asset allocation strategies popular. However, the strategies still construct the risk concentrated portfolios due to the correlation among the asset classes. As a result, risk allocation among uncorrelated risk factors instead of risk allocation among asset classes have become widely used. This thesis aims to di...
Testing for rational bubbles in the Turkish stock market
Başoğlu, Fatma; Sezer, Ali Devin; Department of Financial Mathematics (2012)
In this thesis we empirically examine whether the Turkish stock market is driven by rational bubbles over the period between March 1990 and February 2012. The bubble periods are estimated using a recently developed right-tailed unit root test, the generalized sup augmented Dickey-Fuller test of Phillips, Shi and Yu (2011a). Applying their bubble detection and location strategies to weekly price dividend ratio series, we find strong evidence for the existence of rational bubbles in the Turkish stock market b...
A Comparative study for nonlinear structure of the interest rate pass through
Değer, Osman; Yıldırım Kasap, Dilem; Department of Economics (2012)
This study investigates the interest rate pass through from the money market rate to the lending rate by utilizing monthly data of fifteen countries, grouped as high income, upper middle income and lower middle income, over the period 1999:01-2011:09. Taking the linear cointegration test of Engle-Granger as benchmark, we employ threshold cointegration tests of Enders and Siklos (2001) in order to account for the possible nonlinearities in the pass-through process. Empirical results reveal that the pass thro...
Stability advances in robust portfolio optimization under parallelepiped uncertainty
Kara, Guray; Ozmen, Ayse; Weber, Gerhard Wilhelm (2019-03-01)
In financial markets with high uncertainties, the trade-off between maximizing expected return and minimizing the risk is one of the main challenges in modeling and decision making. Since investors mostly shape their invested amounts towards certain assets and their risk aversion level according to their returns, scientists and practitioners have done studies on that subject since the beginning of the stock markets' establishment. In this study, we model a Robust Optimization problem based on data. We found...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ozmen, G. W. Weber, and A. Karimov, “A NEW ROBUST OPTIMIZATION TOOL APPLIED ON FINANCIAL DATA,”
PACIFIC JOURNAL OF OPTIMIZATION
, pp. 535–552, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55224.