Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new 3D FEM formulation for the solution of potential fields in magnetic induction problems
Date
1997-11-02
Author
Tek, Mustafa
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
Time-varying magnetic fields are applied to living tissues for different purposes in medicine. For all applications, the induced current distributions must be accurately estimated in order to obtain the desired medical results. In this study a new 3D finite element method (FEM) formulation is derived. A code is prepared to implement these formulations using 20 noded isoparametric cubic elements. The accuracy of solutions is tested for three simple geometries and series expansion method is used to derive analytical expressions whenever it is necessary. It is shown that, for the selected geometries error in FEM solutions are less than 1%, and can be improved by increasing the number of nodes. The new 3D FEM solver runs in a 166 MHz PC using 128 Mbyte memory and is capable of solving a problem with 100.000 nodes in 80 minutes.
Subject Keywords
Finite element method(FEM)
,
Magnetic stimulation
,
Series expansion method(SEM)
,
Gaussian integration
,
Nuclear magnetic resonance (NMR) imaging
URI
https://hdl.handle.net/11511/55247
Conference Name
International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Development of reconstruction algorithms for magnetic resonance-electrical impedance tomography and experimental realization
Birgül, Özlem; Eyüboğlu, Behçet Murat; İder, Y. Ziya; Department of Electrical and Electronics Engineering (2002)
The electrical properties of biological tissues differ among tissues and vary with physiological and pathological state of a solution of bioelectrical field problems. The aim of this study is to reconstruct conductivity images with higher resolution and better accuracy than existing conductivity imaging tech niques. In order to achieve our goal, we proposed a technique named as Mag netic Resonance-Electrical Impedance Tomography (MR-EIT). MR-EIT com bines peripheral voltage measurements of classical Electri...
A novel layered boron-based neutron shield design and results from neutron and gamma irradiation studies
Muçogllava, Brunilda; Demirköz, Melahat Bilge; Uzun Duran, Selcen; Department of Micro and Nanotechnology (2022-2-18)
Neutron radiation is a widely used tool in medical radiotherapy, non-destructive radiography, material structural studies, and more. However, the absence of electromagnetic charge allows neutrons to easily penetrate materials and skin, causing radioactivation, ionization and displacement damage. For each of the aforementioned applications, shielding against neutrons is of utmost importance. A novel, layered boron-based shield has been designed and tested for shielding in medical applications. The design int...
Measurement of AC magnetic field distribution using magnetic resonance imaging
Ider, YZ; Muftuler, LT (1997-10-01)
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system, A pulse sequence that is originally design...
A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis
Göktepe, Serdar; Parker, Kit; Kuhl, Ellen (2010-08-07)
We present a novel computational model for maladaptive cardiac growth in which kinematic changes of the cardiac chambers are attributed to alterations in cytoskeletal architecture and in cellular morphology. We adopt the concept of finite volume growth characterized through the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. The functional form of its growth tensor is correlated to sarcomerogenesis, the creation and deposition of new sarcomere units. In respo...
Experimental and mathematical investigation of mass transfer in food andhydrogel systems using magnetic resonance imaging and NMR relaxometry
Çıkrıkcı, Sevil; Öztop, Halil Mecit; Department of Food Engineering (2019)
Nuclear magnetic resonance (NMR) and Magnetic Resonance Imaging (MRI) are well-known non-invasive characterization methods used in a wide range of areas; from medical to food applications. NMR experiments are conducted either through spectroscopy with high resolution systems or with relaxometery (Time Domain NMR) through mid or low field systems. Time domain NMR is primarily based on relaxation times and diffusion measurements from the signal coming from the whole sample while MRI enables to visualize the i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tek and N. G. Gençer, “A new 3D FEM formulation for the solution of potential fields in magnetic induction problems,” Chicago, IL, 1997, vol. 19, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55247.