Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
CLUSTER ALGEBRAS AND SYMMETRIC MATRICES
Date
2015-02-01
Author
Seven, Ahmet İrfan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
In the structural theory of cluster algebras, a crucial role is played by a family of integer vectors, called c-vectors, which parametrize the coefficients. It has recently been shown that each c-vector with respect to an acyclic initial seed is a real root of the corresponding root system. In this paper, we obtain an interpretation of this result in terms of symmetric matrices. We show that for skew-symmetric cluster algebras, the c-vectors associated with any seed defines a quasi-Cartan companion for the corresponding exchange matrix (i. e. they form a companion basis), and we establish some basic combinatorial properties. In particular, we show that these vectors define an admissible cut of edges in the associated quivers.
Subject Keywords
Tilted Algebras
,
Quivers
URI
https://hdl.handle.net/11511/55361
Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Collections
Department of Mathematics, Article