Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Smooth manifolds with infinite fundamental group admitting no real projective structure
Date
2017
Author
Çoban, Hatice
Metadata
Show full item record
Item Usage Stats
213
views
0
downloads
Cite This
In this thesis, we construct smooth manifolds with the infinite fundamental group Z_2*Z_2, for any dimension n>=4, admitting no real projective structure. They are first examples of manifolds in higher dimensions with infinite fundamental group admitting no real projective structures. The motivation of our study is the related work of Cooper and Goldman. They proved that RP^3#RP^3 does not admit any real projective structure and this is the first known example in dimension 3.
Subject Keywords
Manifolds (Mathematics).
,
Foliations (Mathematics).
,
Geometry, Projective.
,
Differential topology.
,
Holonomy groups.
URI
http://etd.lib.metu.edu.tr/upload/12621213/index.pdf
https://hdl.handle.net/11511/26529
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Lefloch, Philippe G.; Okutmuştur, Baver; Neves, Wladimir (Springer Science and Business Media LLC, 2009-07-01)
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theo...
Chirality of real non-singular cubic fourfolds and their pure deformation classification
Finashin, Sergey (Springer Science and Business Media LLC, 2020-02-22)
In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.
NONCOMMUTATIVE MACKEY THEOREM
Dosi, Anar (World Scientific Pub Co Pte Lt, 2011-04-01)
In this note we investigate quantizations of the weak topology associated with a pair of dual linear spaces. We prove that the weak topology admits only one quantization called the weak quantum topology, and that weakly matrix bounded sets are precisely the min-bounded sets with respect to any polynormed topology compatible with the given duality. The technique of this paper allows us to obtain an operator space proof of the noncommutative bipolar theorem.
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Çoban, “Smooth manifolds with infinite fundamental group admitting no real projective structure,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.