Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems

2005-03-18
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are approximated in terms of radial basis functions. The application of DQM for time derivative discretization when it is combined with the DRBEM gives an overdetermined system of linear equations since both boundary and initial conditions are imposed. Then the least squares approximation is made use of for solving the overdetermined system. Thus, the solution is obtained at any time level without an iterative scheme. Numerical results are in very good agreement with the theoretical solutions of the test problems considered.
27th World Conference on Boundary Elements and Other Mesh Reduction Methods

Suggestions

Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes
İncegül Yücetürk, Cansu; Yolcu Okur, Yeliz; Hayfavi, Azize; Department of Financial Mathematics (2013)
Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called “Backward Stochastic Differential Equations in Finance” (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstl...
Least-squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of diffusive-convective problems
Bozkaya, Canan (Elsevier BV, 2007-01-01)
Least-squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in diffusive-convective type problems with variable coefficients. The DRBEM enables us to use the fundamental solution of Laplace equation, which is easy to implement computation ally. The terms except the Laplacian are considered as the nonhomogeneity in the equation, which ar...
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
Pekmen, B.; Tezer, Münevver (2012-08-01)
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in s...
BEM solution of unsteady convection-diffusion type fluid flow problems
Fendoğlu, Hande; Bozkaya, Canan; Department of Mathematics (2020)
The time-dependent convection-diffusion-reaction (CDR) type equations with constant and variable convective coefficients are solved by using two different boundary element methods (BEM), namely dual reciprocity BEM (DRBEM) and domain BEM (DBEM), in the spatial discretization while an implicit backward finite difference scheme is used in time. In the applications of DRBEM and DBEM, the fundamental solutions of both CDR equation and the modified Helmholtz (mH) equation are made use of. This results in some le...
Exact Solutions of Some Partial Differential Equations Using the Modified Differential Transform Method
Cansu Kurt, Ümmügülsüm; Ozkan, Ozan (2018-03-01)
In this paper, we present the modification of the differential transform method by using Laplace transform and Pade approximation to obtain closed form solutions of linear and nonlinear partial differential equations. Some illustrative examples are given to demonstrate the activeness of the proposed technique. The obtained results ensure that this modified method is capable of solving a large number of linear and nonlinear PDEs that have wide application in science and engineering. It solves the drawbacks i...
Citation Formats
C. Bozkaya, “Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems,” Orlando, FL, 2005, vol. 39, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55370.