Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A MASS ASSIGNMENT ALGORITHM FOR DEMPSTER-SHAFER APPROACH
Date
2014-04-25
Author
Turhan, Hasan Ihsan
Demirekler, Mübeccel
Gunay, Melih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
In this work, a new methodology is proposed for probability mass assignment to be used in Dempster-Shafer approach. The approach is developed for the cases where the prior and the current information are represented by probability density functions. Masses are assigned by comparing the prior and the current probability density functions which are assumed to be Gaussian. The proposed method is tested by artificial data and compared with the method given in [13] which is most similar to the proposed one in the literature.
Subject Keywords
Decision making
,
Classification
,
Dempster-Shafer Theory
,
Basic mass (or belief or probability) assignment
URI
https://hdl.handle.net/11511/55473
Conference Name
22nd IEEE Signal Processing and Communications Applications Conference (SIU)
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
A Favorable Weight-Based Evolutionary Algorithm for Multiple Criteria Problems
SOYLU, Banu; Köksalan, Mustafa Murat (Institute of Electrical and Electronics Engineers (IEEE), 2010-04-01)
In this paper, we present a favorable weight-based evolutionary algorithm for multiple criteria problems. The algorithm tries to both approximate the Pareto frontier and evenly distribute the solutions over the frontier. These two goals are common for many multiobjective evolutionary algorithms. To achieve these goals in our algorithm, each member selects its own weights for a weighted Tchebycheff distance function to define its fitness score. The fitness scores favor solutions that are closer to the Pareto...
An interactive ranking-based multi-criteria choice algorithm with filtering: Applications to university selection
Karakaya, Gülşah (Orta Doğu Teknik Üniversitesi (Ankara, Turkey), 2019-6)
In this study, we develop an interactive algorithm to converge to the most preferred alternative of a decision maker (DM) among a set of discrete alternatives. The algorithm presents a limited number of alternatives to the DM and collects preference ranking of them iteratively. The preferences are modeled by a flexible and realistic preference function. To improve the performance, the alternatives presented are determined by a filtering method. We compare our algorithm with benchmark algorithms on nume...
A DRBEM Approach for the STOKES Eigenvalue Problem
Tezer, Münevver; Türk, Önder (2016-07-04)
In this study, we propose a novel approach based on the dual reciprocity boundary element method (DRBEM) to approximate the solutions of various Steklov eigenvalue problems. The method consists in weighting the governing differential equation with the fundamental solutions of the Laplace equation where the definition of interior nodes is not necessary for the solution on the boundary. DRBEM constitutes a promising tool to characterize such problems due to the fact that the boundary conditions on part or all...
A DRBEM approximation of the Steklov eigenvalue problem
Türk, Önder (Elsevier BV, 2021-01-01)
In this study, we propose a novel approach based on the dual reciprocity boundary element method (DRBEM) to approximate the solutions of various Steklov eigenvalue problems. The method consists in weighting the governing differential equation with the fundamental solutions of the Laplace equation where the definition of interior nodes is not necessary for the solution on the boundary. DRBEM constitutes a promising tool to characterize such problems due to the fact that the boundary conditions on part or all...
A matheuristic for binary classification of data sets using hyperboxes
Akbulut, Derya; İyigün, Cem; Özdemirel, Nur Evin (null; 2018-07-08)
In this study, an optimization approach is proposed for the binary classification problem. A Mixed Integer Programming (MIP) model formulation is used to construct hyperboxes as classifiers, minimizing the number of misclassified and unclassified samples as well as overlapping of hyperboxes. The hyperboxes are determined by some lower and upper bounds on the feature values, and overlapping of these hyperboxes is allowed to keep a balance between misclassification and overfitting. A matheuristic, namely Iter...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. I. Turhan, M. Demirekler, and M. Gunay, “A MASS ASSIGNMENT ALGORITHM FOR DEMPSTER-SHAFER APPROACH,” presented at the 22nd IEEE Signal Processing and Communications Applications Conference (SIU), Karadeniz Teknik Univ, Trabzon, TURKEY, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55473.