Static and dynamic analysis of shear deformable composite shells of revolution by semi-analytical approach

2013-10-18
In the present study, multi-segment numerical integration technique is applied for the static and dynamic analysis of macroscopically anisotropic shells of revolution including transverse shear deformation. Application of the multi-segment numerical integration technique is achieved through the use of finite exponential Fourier transform of the fundamental shell of revolution equations governing the static loading and free vibration of the shell of revolution. For the non-axisymmetrically loaded shells of revolution, the paper presents the numerical integration based solution process of the transformed shell variables and back transformation to obtain the physical shell variables. As a follow-up study, multi-segment numerical integration technique is extended to the solution of free vibration problem of anisotropic composite shells of revolutionwhich are wound along the semi-geodesic fiber paths counting on the preset friction used during the winding process. Sample results are obtained for truncated conical and spherical shells of revolution for which the winding angle and the thickness vary along the shell axis, and the effect of preset friction on the vibration characteristics of filament wound shells of revolution is particularly analyzed.
10th Jubilee Conference on Shell Structures - Theory and Applications (SSTA)

Suggestions

Static and free vibration analyses of small - scale functionally graded beams possessing a variable length scale parameter using different beam theories
Aghazadeh, Reza; Dağ, Serkan; Ciğeroğlu, Ender; Department of Mechanical Engineering (2013)
This study presents static and free vibration analyses of functionally graded (FG) micro - beams on the basis of higher order continuum mechanics used in conjunction with classical and higher order shear deformation beam theories. Unlike conventional ones, higher order elastic theories consider the size effect for the beam. Strain gradient theory (SGT) and modified couple stress theory (MCST) are the two common non-classical continuum approaches capable of capturing the size effect. Shear deformation beam t...
Dynamic force analysis of a novel mechanism for chord and camber morphing wing under aerodynamic loading
Sahin, Harun Levent; Caklr, Bora Orçun; Yaman, Yavuz (2018-09-07)
In this paper, the dynamic force analysis of a novel deployable mechanism, called as scissor-structural mechanism (SSM), for active camber and chord morphing have been presented. The mechanism is created via combination of several scissor-like-elements (SLEs). With a novel kinematic synthesis concept, various types of scissor-like-elements are assembled together to provide the desired airfoil geometries. The types (translational, polar), the number of scissor-like-elements, their orientations with respect t...
Fluid-structure interactions with both structural and fluid nonlinearities
Bendiksen, O. O.; Seber, G. (Elsevier BV, 2008-08-19)
In this study, we consider a class of nonlinear aeroelastic stability problems, where geometric nonlinearities arising from large deflections and rotations in the structure interact with aerodynamic nonlinearities caused by moving shocks. Examples include transonic panel flutter and flutter of transonic wings of high aspect ratio, where the presence of both structural and aerodynamic nonlinearities can have a dramatic qualitative as well as quantitative effect on the flutter behavior. Both cases represent i...
Free-Vibration Analysis of Ring-Stiffened Branched Composite Shells of Revolution
Kayran, Altan (American Institute of Aeronautics and Astronautics (AIAA), 2010-4)
Application of the multisegment numerical integration technique is extended to the free-vibration analysis of macroscopically anisotropic filament-wound branched shells of revolution with ring stiffeners, considering the variation of the thickness and winding angle. The solution procedure is based on a modified-frequency trial method, which processes on the numerically integrated transformed fundamental shell equations that are obtained in terms of finite exponential Fourier transform of the fundamental she...
Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Citation Formats
A. Kayran, “Static and dynamic analysis of shear deformable composite shells of revolution by semi-analytical approach,” presented at the 10th Jubilee Conference on Shell Structures - Theory and Applications (SSTA), Gdansk, POLAND, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55552.