MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

2011-09-01
Ekiz, Ahmet
Camci, Talha
Turkmen, Ibrahim
SANKIR, MEHMET
USLU, SITKI
Baker, Derek Keıth
Agar, Ertan
Fuel cell technology is one of the most economic and efficient ways to utilize hydrogen energy. Various types of fuel cells are present regarding the fuel type and amount of power produced. Among these, proton exchange membrane fuel cells (PEMFCs) are very promising. In this work, a 2D proton exchange membrane fuel cell unit cell was modeled using Comsol Multiphysics software. Cell section was taken parallel to flow direction. Obstacles with various geometries were placed in the flow channel in order to force more reactant species to react. The goal is to have current and power densities that approach ideal performance and to minimize losses. As boundary conditions, several inlet velocities were applied. Also, the effect of setting different pressure values at the outlet was investigated. Consequently, it was observed that increasing inlet velocity and outlet pressure, feeding more reactant at the cathode compared to the anode, and increasing the depth of the obstacles placed through the channel enhanced the fuel cell performance.
JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY

Suggestions

Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Development of 500 W PEM fuel cell stack for portable power generators
DEVRİM, YILSER; Devrim, Huseyin; Eroğlu, İnci (2015-06-29)
Polymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 1...
Investigation of temperature profile in high temperature PEM fuel cell
Çağlayan, Dilara Gülçin; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are promising alternative energy sources for the future. As an advantageous tool in the design of a system, modeling requires less time compared to the experiments as well as its low cost. This study includes both isothermal and non-isothermal three-dimensional mathematical models for a HT-PEMFC having an active area of 25 cm2. Governing equations are solved by using Comsol Multiphysics 5.0 “Batteries & Fuel Cells” module, which is a commer...
Development of solid sodium borohydride hydrogen gas generator for portable pem fuel cell applications
Boran, Aslı; Eroğlu, İnci; Department of Chemical Engineering (2018)
Hydrogen is considered as a promising candidate to replace fossil fuels. For implementing a hydrogen based infrastructure, hydrogen storage is the mainobstacle that is needed to be overcome. Being boron based compound, sodium borohydride, NaBH4, is a convenient hydrogen storage material for applications like unmanned air vehicles. There are several issues behind commercialization of NaBH4 hydrolysis systems. This doctorate thesis aims to be solution of NaBH4 hydrolysis system by highlighting three main cont...
Mathematical modeling of FBC'a co-fired with lignite and biomass
Moralı, Ekrem Mehmet; Selçuk, Nevin; Department of Chemical Engineering (2007)
Increasing environmental legislations on pollutant emissions originated from fossil fuel combustion and intention of increasing the life of existing fossil fuels give rise to the use of renewable sources. Biomass at this juncture, with its renewable nature and lower pollutant emission levels becomes an attractive energy resource. However, only seasonal availability of biomass and operation problems caused by high alkaline content of biomass ash restrict its combustion alone. These problems can be overcome b...
Citation Formats
A. Ekiz et al., “MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS,” JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, pp. 591–605, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55565.