Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evolving aggregation behaviors in a swarm of robots
Date
2003-01-01
Author
Trianni, V
Gross, R
Labella, TH
Şahin, Erol
Dorigo, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
248
views
0
downloads
Cite This
In this paper, we study aggregation in a swarm of simple robots, called s-bots, having the capability to self-organize and self-assemble to form a robotic system, called a swarm-bot. The aggregation process, observed in many biological systems, is of fundamental importance since it is the prerequisite for other forms of cooperation that involve self-organization and self-assembling. We consider the problem of defining the control system for the swarm-bot using artificial evolution. The results obtained in a simulated 3D environment are presented and analyzed. They show that artificial evolution, exploiting the complex interactions among s-bots and between s-bots and the environment, is able to produce simple but general solutions to the aggregation problem.
Subject Keywords
Group Size
,
Mobile Robot
,
Swarm Intelligence
,
Dictyostelium Discoideum
,
Neural Controller
URI
https://hdl.handle.net/11511/55654
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=7444252985&origin=inward
Journal
ADVANCES IN ARTIFICIAL LIFE, PROCEEDINGS
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Evolving self-organizing behaviors for a swarm-bot
Dorigo, M; Trianni, V; Şahin, Erol; Gross, R; Labella, TH; Baldassarre, G; Nolfi, S; Deneubourg, JL; Mondada, F; Floreano, D; Gambardella, LM (2004-09-01)
In this paper, we introduce a self-assembling and self-organizing artifact, called a swarm-bot, composed of a swarm of s-bots, mobile robots with the ability to connect to and to disconnect from each other. We discuss the challenges involved in controlling a swarm-bot and address the problem of synthesizing controllers for the swarm-bot using artificial evolution. Specifically, we study aggregation and coordinated motion of the swarm-bot using a physics-based simulation of the system. Experiments, using a s...
DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED AGGREGATION METHOD WITH A MOBILE ROBOT SWARM
Gür, Emre; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-9-09)
In this thesis, the development of a social, reinforcement learning-based aggregation method is covered together with the development of a mobile robot swarm of Kobot- Tracked (Kobot-T) robots. The proposed method is developed to improve efficiency in low robot density swarm environments especially when the aggregated area is difficult to find. The method is called Social Reinforcement Learning, and Landmark-Based Aggregation (SRLA) and it is based on Q learning. In this method, robots share their Q tables ...
Design of a Micro Piezo Actuated Gripper for a Swarm Robotic System
Kaygusuz, Batuhan; Turgut, Ali Emre (2016-07-31)
In this paper, we introduced a novel micro swarm robotic platform, called the AttaBot, designed specifically for complex systems and swarm robotics research. The novelty of the AttaBot platform is two-folds. (1) Artificial pheromones are implemented, (2) Each AttaBot has a gripper to grip small discs on the ground. In this way, AttaBot platform can be used in many different swarm scenarios including foraging, collective motion and collective transport. We introduced the design of the AttaBot, focusing mainl...
Swarm-Bot: Pattern Formation in A Swarm Of Self-Assembling Mobile Robots
Şahin, Erol; Trianni, Vito; Deneubourg, Jean-louis; Rasse, Philip; Floreano, Dario; Gambardella, Luca; Mondada, Francesco; Nolfi, Stefano; Dorigo, Marco (2002-12-01)
In this paper we introduce a new robotic system, called swarm-bot. The system consists of a swarm of mobile robots with the ability to connect to/disconnect from each other to self-assemble into different kinds of structures. First, we describe our vision and the goals of the project. Then we present preliminary results on the formation of patterns obtained from a grid-world simulation of the system.
Designing Social Cues for Collaborative Robots: The Role of Gaze and Breathing in Human-Robot Collaboration
Terzioglu, Yunus; Mutlu, Bilge; Şahin, Erol (2020-01-01)
In this paper, we investigate how collaborative robots, or cobots, typically composed of a robotic arm and a gripper carrying out manipulation tasks alongside human coworkers, can be enhanced with HRI capabilities by applying ideas and principles from character animation. To this end, we modified the appearance and behaviors of a cobot, with minimal impact on its functionality and performance, and studied the extent to which these modifications improved its communication with and perceptions by human collab...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Trianni, R. Gross, T. Labella, E. Şahin, and M. Dorigo, “Evolving aggregation behaviors in a swarm of robots,”
ADVANCES IN ARTIFICIAL LIFE, PROCEEDINGS
, pp. 865–874, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55654.