Designing Transformation-based Metamaterials for Numerical Modeling of Low Frequency Electromagnetic Scattering

2012-08-23
Ozgun, Ozlem
Kuzuoğlu, Mustafa
This paper presents coordinate transformation techniques for solving low-frequency electromagnetic boundary value problems involving electrically-small geometrical features. The major motivation is to eliminate the need for fine mesh and to allow uniform and easy-to-generate meshes by placing transformation media into the computational domain. A salutary feature of the proposed methods is the capability to handle arbitrarily-shaped geometries by using a 'single' mesh and by changing only the constitutive parameters inside the matematerial layer. Several numerical simulations are illustrated in the context of finite element solution of electromagnetic scattering problems.

Suggestions

Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
Combining perturbation theory and transformation electromagnetics for finite element solution of Helmholtz-type scattering problems
Kuzuoğlu, Mustafa (2014-10-01)
A numerical method is proposed for efficient solution of scattering from objects with weakly perturbed surfaces by combining the perturbation theory, transformation electro-magnetics and the finite element method. A transformation medium layer is designed over the smooth surface, and the material parameters of the medium are determined by means of a coordinate transformation that maps the smooth surface to the perturbed surface. The perturbed fields within the domain are computed by employing the material p...
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods
Merheb, Abdel-Razzak; GAZİ, VEYSEL; Sezer Uzol, Nilay (2016-10-01)
This paper presents a practical swarm navigation algorithm based on potential functions and properties of inviscid incompressible flows. Panel methods are used to solve the flow equations around complex shaped obstacles and to generate the flowlines, which provide collision-free paths to the goal position. Safe swarm navigation is achieved by following the generated streamlines. Potential functions are used to achieve and maintain group cohesion or a geometric formation during navigation. The algorithm is i...
Efficient Computation of Green's Functions for Multilayer Media in the Context of 5G Applications
Mittra, Raj; Özgün, Özlem; Li, Chao; Kuzuoğlu, Mustafa (2021-03-22)
This paper presents a novel method for effective computation of Sommerfeld integrals which arise in problems involving antennas or scatterers embedded in planar multilayered media. Sommerfeld integrals that need to be computed in the evaluation of spatial-domain Green's functions are often highly oscillatory and slowly decaying. For this reason, standard numerical integration methods are not efficient for such integrals, especially at millimeter waves. The main motivation of the proposed method is to comput...
Citation Formats
O. Ozgun and M. Kuzuoğlu, “Designing Transformation-based Metamaterials for Numerical Modeling of Low Frequency Electromagnetic Scattering,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55718.