Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Recent advances in perfectly matched layers in finite element applications
Date
2008-01-01
Author
Ozgun, Ozlem
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
154
views
0
downloads
Cite This
We present a comparative evaluation of two novel and practical perfectly matched layer (PML) implementations to the problem of mesh truncation in the finite element method (FEM): locally-conformal PML, and multi-center PML techniques. The most distinguished feature of these methods is the simplicity and flexibility to design conformal PMLs over challenging geometries, especially those with curvature discontinuities, in a straightforward way without using artificial absorbers. These methods are based on specially- and locally-defined complex coordinate transformations inside the PML region. They can easily be implemented in a conventional FEM by just replacing the nodal coordinates inside the PML region by their complex counterparts obtained via complex coordinate transformation. After overviewing the theoretical bases of these methods, we present some numerical results in the context of two- and three-dimensional electromagnetic radiation/scattering problems.
Subject Keywords
Finite element method (FEM)
,
Perfectly matched layer (PML)
,
Locally-conformal PML
,
Multi-center PML
,
Complex coordinate stretching
,
Electromagnetic scattering
URI
https://hdl.handle.net/11511/55862
Journal
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
On the use of complex stretching coordinates in generalized finite difference method with applications in inhomogeneous visco-elasto dynamics
Korkut, Fuat; Mengi, Yalcin; Tokdemir, Turgut (2022-01-01)
In the study, in conjunction with perfectly matched layer (PML) analysis, an approach is proposed for the evaluation of complex derivatives directly in terms of complex stretching coordinates of points in PML. For doing this within the framework of generalized finite difference method (GFDM), a difference equation is formulated and presented, where both the function values and coordinates of data points might be complex. The use of the proposed approach is considered in the analysis of inhomogeneous visco-e...
Finite Element Modeling of Anisotropic Half-Space Problems by a Simple Mesh Truncation Scheme
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2017-07-14)
Anisotropic half-space problems are modeled with finite element method with a simple mesh truncation scheme based on the locally-conformal PML method. The PML is simply implemented by just using complex coordinates inside an anisotropic medium without introducing additional anisotropy and without modifying the finite element formulation. This approach is useful to model electromagnetic radiation and scattering from structures embedded within arbitrary anisotropic media. Simulation results are demonstrated t...
Questioning Degree of Accuracy Offered by the Spectral Element Method in Computational Electromagnetics
Mahariq, I.; KURT, HAMZA; Kuzuoğlu, Mustafa (2015-07-01)
In this paper, a comparison amongst the spectral element method (SEM), the finite difference method (FDM), and the first-order finite element method (FEM) is presented. For the sake of consistency, the comparison is carried out on one-dimensional and two-dimensional boundary value problems based on the same measure of error in order to emphasize on the high accuracy gained by the SEM. Then, the deterioration in the accuracy of the SEM due to the elemental deformation is demonstrated. Following this, we try ...
Near-field performance analysis of locally-conformal perfectly matched absorbers via Monte Carlo simulations
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2007-12-10)
In the numerical solution of some boundary value problems by the finite element method (FEM), the unbounded domain must be truncated by an artificial absorbing boundary or layer to have a bounded computational domain. The perfectly matched layer (PML) approach is based on the truncation of the computational domain by a reflectionless artificial layer which absorbs outgoing waves regardless of their frequency and angle of incidence. In this paper, we present the near-field numerical performance analysis of o...
Investigation of nonplanar perfectly matched absorbers for finite-element mesh truncation
Kuzuoğlu, Mustafa (1997-03-01)
In this paper, we present a detailed theoretical and numerical investigation of the perfectly matched layer (PML) concept as applied to the problem of mesh truncation in the finite-element method (FEM), We show that it is possible to extend the Cartesian PML concepts involving half-spaces to cylindrical and spherical geometries appropriate for closed boundaries in two and three dimensions by defining lossy anisotropic layers in the relevant coordinate systems, By using the method of separation of variables,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ozgun and M. Kuzuoğlu, “Recent advances in perfectly matched layers in finite element applications,”
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
, pp. 57–66, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55862.