CATCHING CONTINUUM BETWEEN PRESHAPE AND GRASPING BASED ON FLUIDICS

2010-07-24
Ozyer, Baris
Erkmen, İsmet
Erkmen, Aydan Müşerref
We propose a new fluidics based methodology to determine a continuum between preshaping and grasping so as to appropriately preshape a multifingered robot hand for creating an optimal initialization of grasp, with minimum energy loss towards task execution, upon landing on an object. In this paper, we investigate the effects of impact forces and momentum transfer between different hand preshapes landing on an object. Momentum transfer parameters lead to modification of object orientation and position at the very initial stage of task after that preshaped fingers land on the object. We model fingers as particles in a solidified environment while the medium squeezed by hand preshape that is closing upon an object, is modeled as a compressible fluid where momentum is propagated until hitting the surface of the solidified particle medium of the object. Smoothed particle hydrodynamics model (SPH) is used to simulate the general dynamic of fluid flows and momentum transfer between particles of different media. The fingers of the robotic hand are modeled by solidified fluid particles interacting with compressible surrounding fluids in which objects are defined as rigid-body solidified fluid particles. The developed model has been applied, in this paper, to the simulation of various simple robot hand preshaping and the generated momentum transfer profiles an object surface have been analyzed.
10th ASME Biennial Conference on Engineering Systems Design and Analysis

Suggestions

Momentum transfer continuum between preshape and grasping based on fluidics
Özyer, Barış; Erkmen, İsmet; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2012)
This dissertation propose a new fluidics based framework to determine a continuum between preshaping and grasping so as to appropriately preshape a multi-fingered robot hand for creating an optimal initialization of grasp. The continuum of a hand preshape closing upon an object that creates an initial object motion tendency of the object based on the impact moment patterns generated from the fingers is presented. These motion tendencies should then be suitable for the proper initiation of the grasping task....
Momentum Transfer from the Fingers to Object Based on Fluid Dynamics
Ozyer, Baris; Erkmen, İsmet; Erkmen, Aydan Müşerref (2010-10-22)
The initial effect of the impact force patterns on the object for achieving stably grasping is dependent on starting of the movement of a robot hand by taking an optimal preshape. These impact force patterns generated from the changes of the momenta obtained from the fingers lead to motion tendencies of the object. Determining optimal preshape of hand is closely related with the continuum between the initial position of hand preshape and posture of the hand at the contact points on the object. In this paper...
Robot hand preshaping and regrasping using genetic algorithms
Erkmen, İsmet; Erkmen, Aydan Müşerref; Gunver, H (2000-09-01)
This paper contributes (1) to the development of the necessary formalism for the generation of task optimal fingertip trajectories for a multifingered robot hand of a predetermined preshape closing upon an object to be handled; (2) to the generation, in the case of a failing grasp, of an optimal sequence of hand preshapes, differing gradually from each other in terms of manipulability and stability. A "look ahead" preshape control for a robot hand, either in the phase of impacting an object with a certain h...
Towards learning affordances : detection of relevant features and characteristics for reachability
Eren, Selda; Şahin, Erol; Department of Information Systems (2006)
In this thesis, we reviewed the affordance concept for autonomous robot control and proposed that invariant features of objects that support a specific affordance can be learned. We used a physics-based robot simulator to study the reachability affordance on the simulated KURT3D robot model. We proposed that, through training, the values of each feature can be split into strips, which can then be used to detect the relevant features and their characteristics. Our analysis showed that it is possible to achie...
Command governor-based adaptive control for dynamical systems with matched and unmatched uncertainties
Yayla, Metehan; Kutay, Ali Türker (2018-08-01)
In this paper, we propose a command governor-based adaptive control architecture for stabilizing uncertain dynamical systems with not only matched but also unmatched uncertainties and achieving the desired command following performance of a user-defined subset of the accessible states. In our proposed solution, online least-squares solutions for the matched and unmatched parameters are obtained through integration method and they are employed in the adaptive control framework. Specifically, the matched unce...
Citation Formats
B. Ozyer, İ. Erkmen, and A. M. Erkmen, “CATCHING CONTINUUM BETWEEN PRESHAPE AND GRASPING BASED ON FLUIDICS,” presented at the 10th ASME Biennial Conference on Engineering Systems Design and Analysis, Istanbul, TURKEY, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55872.