Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures
Date
2019-05-01
Author
Karaosmanoglu, Bariscan
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
We consider a modified combined tangential formulation (MCTF) for stable and accurate analysis of plasmonic problems involving metallic objects modeled as penetrable bodies. For a wide range of negative real permittivity values, corresponding to varying characteristics of metals at THz, infrared, and visible frequencies, MCTF provides accurate solutions in comparison to the conventional formulations for penetrable objects. We further show that, for structures with subwavelength dimensions, penetrable models formulated with MCTF can be essential for accurate analysis, rather than the perfectly conducting formulations, even at the lower THz frequencies.
Subject Keywords
Plasmonic problems
,
Scattering
,
Surface integral equations
URI
https://hdl.handle.net/11511/55903
Journal
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-30)
We present a modified combined tangential formulation (MCTF) for stable solutions of plasmonic problems involving metallic objects that are modeled as penetrable structures. For a wide range of negative real permittivity values, corresponding to the varying characteristics of the metals at infrared and visible frequencies, MCTF provides both accurate and efficient solutions in comparison to the conventional formulations. We explain the stability of MCTF in terms of the discretized operators for the limit ca...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Fast and accurate analysis of three-dimensional structures involving near-zero-index materials
Karaosmanoglu, Bariscan; Koyaz, Yesim; İbili, Hande; Ergül, Özgür Salih (2019-09-01)
We present efficient and accurate frequency-domain analysis of three-dimensional structures involving near-zero-index (NZI) materials with very small permittivity and/or permeability values. Accurate simulations are required to analyze these homogenized models that represent metamaterials with exotic NZI properties, which can be useful in a plethora of applications. When traditional solution methods are directly applied, however, instability and inaccuracy issues arise, making solutions inefficient and inac...
Improving the accuracy of the surface integral equations for low-contrast dielectric scatterers
Ergül, Özgür Salih (2007-06-15)
Solutions of scattering problems involving low-contrast dielectric objects are considered by employing surface integral equations. A stabilization procedure based on extracting the non-radiating part of the induced currents is applied so that the remaining radiating currents can be modelled appropriately and the scattered fields from the low-contrast objects can be calculated with improved accuracy. Stabilization is applied to both tangential (T) and normal (N) formulations in order to use the benefits of d...
Modified Superformula Contours Optimized via Genetic Algorithms for Exponentially Converging 2D Solutions of MFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2017-05-25)
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of magnetic field integral equation (MFIE) in 2D either for TM or TE polarized excitations. A version of superformula modified for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the MFIE kernel and convergence of the solution ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karaosmanoglu and Ö. S. Ergül, “Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures,”
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
, pp. 811–814, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55903.