Fast and accurate analysis of three-dimensional structures involving near-zero-index materials

2019-09-01
Karaosmanoglu, Bariscan
Koyaz, Yesim
İbili, Hande
Ergül, Özgür Salih
We present efficient and accurate frequency-domain analysis of three-dimensional structures involving near-zero-index (NZI) materials with very small permittivity and/or permeability values. Accurate simulations are required to analyze these homogenized models that represent metamaterials with exotic NZI properties, which can be useful in a plethora of applications. When traditional solution methods are directly applied, however, instability and inaccuracy issues arise, making solutions inefficient and inaccurate particularly when electrically large models need to be studied. Identifying that numerical problems are due to unbalanced equations, extremely small/large terms, as well as the traditional low-frequency breakdown, we develop alternative implementations based on novel surface integral equations and broadband multilevel fast multipole algorithm. Numerical examples demonstrate excellent accuracy, stability, and efficiency of the developed solvers for NZI structures.

Suggestions

Full-wave optimization of three-dimensional photonic-crystal structures involving dielectric rods
KARAOSMANOGLU, Bariscan; ERAY, Hamza; Ergül, Özgür Salih (2018-07-01)
We present rigorous optimization and design of three-dimensional photonic-crystal (PhC) structures involving finite dielectric rods. These types of PhCs are known to be useful in diverse applications, such as imaging, power focusing, filtering, and pattern shaping at optical frequencies. Without resorting to their two-dimensional models, which are commonly used in the literature, we consider PhCs as three-dimensional structures, whose electromagnetic characteristics are optimized via genetic algorithms inte...
Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-30)
We present a modified combined tangential formulation (MCTF) for stable solutions of plasmonic problems involving metallic objects that are modeled as penetrable structures. For a wide range of negative real permittivity values, corresponding to the varying characteristics of the metals at infrared and visible frequencies, MCTF provides both accurate and efficient solutions in comparison to the conventional formulations. We explain the stability of MCTF in terms of the discretized operators for the limit ca...
Novel SIE formulations for accurate and stable analysis of near-zero-index materials
KARAOSMANOGLU, BARISCAN; OZMU, UTKU; Ergül, Özgür Salih (2019-07-01)
© 2019 IEEE.We present surface-integral-equation formulations for accurate and stable solutions of electromagnetic problems involving near-zero-index materials with arbitrarily small permittivity and/or permeability values. The formulations are developed for conventional discretizations, while they can be implemented by using interaction routines of existing solvers. Initial results on canonical objects clearly demonstrate the superiority of the developed formulations in comparison to the conventional ones.
FAST AND ACCURATE ANALYSIS OF LARGE METAMATERIAL STRUCTURES USING THE MULTILEVEL FAST MULTIPOLE ALGORITHM
Guerel, L.; Ergül, Özgür Salih; Uenal, A.; Malas, T. (2009-01-01)
We report fast and accurate simulations of metamaterial structures constructed with large numbers of unit cells containing split-ring resonators and thin wires. Scattering problems involving various metamaterial walls are formulated rigorously using the electric-field integral equation, discretized with the Rao-Wilton-Glisson basis functions. Resulting dense matrix equations are solved iteratively,where the matrix-vector multiplications are performed efficiently with the multilevel fast multipole algorithm....
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Citation Formats
B. Karaosmanoglu, Y. Koyaz, H. İbili, and Ö. S. Ergül, “Fast and accurate analysis of three-dimensional structures involving near-zero-index materials,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39036.