Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Continuous optimization approaches for clustering via minimum sum of squares
Date
2008-05-23
Author
Akteke-Ozturk, Basak
Weber, Gerhard Wilhelm
Kropat, Erik
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
In this paper, we survey the usage of semidefinite programming (SDP), and nonsmooth optimization approaches for solving the minimum sum of squares problem which is of fundamental importance in clustering. We point out that the main clustering idea of support vector clustering (SVC) method could be interpreted as a minimum sum of squares problem and explain the derivation of semidefinite programming and a nonsmooth optimization formulation for the minimum sum of squares problem. We compare the numerical results produced by the semidefinite formulation of minimum sum of squares with the results obtained from approaching it via nonsmooth optimization on two datasets.
Subject Keywords
Support vector clustering
,
SDP
,
Nonsmooth optimization
,
Minimal sum of squares
,
K-means
,
Relaxation
URI
https://hdl.handle.net/11511/55991
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Multi-objective integer programming: A general approach for generating all non-dominated solutions
Oezlen, Melih; Azizoğlu, Meral (Elsevier BV, 2009-11-16)
In this paper we develop a general approach to generate all non-dominated solutions of the multi-objective integer programming (MOIP) Problem. Our approach, which is based on the identification of objective efficiency ranges, is an improvement over classical epsilon-constraint method. Objective efficiency ranges are identified by solving simpler MOIP problems with fewer objectives. We first provide the classical epsilon-constraint method on the bi-objective integer programming problem for the sake of comple...
Derivative free algorithms for large scale non-smooth optimization and their applications
Tor, Ali Hakan; Karasözen, Bülent; Department of Mathematics (2013)
In this thesis, various numerical methods are developed to solve nonsmooth and in particular, nonconvex optimization problems. More specifically, three numerical algorithms are developed for solving nonsmooth convex optimization problems and one algorithm is proposed to solve nonsmooth nonconvex optimization problems. In general, main differences between algorithms of smooth optimization are in the calculation of search directions, line searches for finding step-sizes and stopping criteria. However, in nonsmoo...
Numerical method for optimizing stirrer configurations
Schafer, M; Karasözen, Bülent; Uludağ, Yusuf; YAPICI, KEREM; Uğur, Ömür (2005-12-15)
A numerical approach for the numerical optimization of stirrer configurations is presented. The methodology is based on a parametrized grid generator, a flow solver, and a mathematical optimization tool, which are integrated into an automated procedure. The flow solver is based on the discretization of the Navier-Stokes equations by means of the finite-volume method for block-structured, boundary-fitted grids with multi-grid acceleration and parallelization by grid partitioning. The optimization tool is an ...
Aggregate codifferential method for nonsmooth DC optimization
Tor, Ali Hakan; Bagirov, Adil; Karasözen, Bülent (2014-03-15)
A new algorithm is developed based on the concept of codifferential for minimizing the difference of convex nonsmooth functions. Since the computation of the whole codifferential is not always possible, we use a fixed number of elements from the codifferential to compute the search directions. The convergence of the proposed algorithm is proved. The efficiency of the algorithm is demonstrated by comparing it with the subgradient, the truncated codifferential and the proximal bundle methods using nonsmooth o...
Consensus clustering of time series data
Yetere Kurşun, Ayça; Batmaz, İnci; İyigün, Cem; Department of Scientific Computing (2014)
In this study, we aim to develop a methodology that merges Dynamic Time Warping (DTW) and consensus clustering in a single algorithm. Mostly used time series distance measures require data to be of the same length and measure the distance between time series data mostly depends on the similarity of each coinciding data pair in time. DTW is a relatively new measure used to compare two time dependent sequences which may be out of phase or may not have the same lengths or frequencies. DTW aligns two time serie...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Akteke-Ozturk, G. W. Weber, and E. Kropat, “Continuous optimization approaches for clustering via minimum sum of squares,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55991.