Electromagnetic modeling of split-ring resonators

2006-09-15
Gurel, Levent
Unal, Alper
Ergül, Özgür Salih
In this paper, we report our efforts to model split-ring resonators (SRRs) and their large arrays accurately and efficiently in a sophisticated simulation environment based on recent advances in the computational electromagnetics. The resulting linear system obtained from the simultaneous discretization of the geometry and Maxwell's equations is solved iteratively with the multilevel fast multipole algorithm. As an example, we present an array of 125 SRRs showing a negative effective permeability about 92 GHz.

Suggestions

Rigorous Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2015-05-17)
We present accurate full-wave analysis of deformed nanowires using a rigorous simulation environment based on the multilevel fast multipole algorithm. Single nanowires as well as their arrays are deformed randomly in order to understand the effects of deformations to scattering characteristics of these structures. Results of hundreds of simulations are considered for statistically meaningful analysis of deformation effects. We show that deformations significantly enhance the forward-scattering abilities of ...
Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Nested Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-24)
Nested iterative solutions using full and approximate forms of the multilevel fast multipole algorithm (MLFMA) are presented for efficient analysis of electromagnetic problems. The developed mechanism is based on preconditioning an iterative solution via another iterative solution, and this way, nesting multiple solutions as layers. The accuracy is systematically reduced from top to bottom by using the on-the-fly characteristics of MLFMA, as well as the iterative residual errors. As a demonstration, a three...
Rigorous Solutions of Large-Scale Scattering Problems Discretized with Hundreds of Millions of Unknowns
Guerel, L.; Ergül, Özgür Salih (2009-09-18)
We present fast and accurate solutions of large-scale scattering problems using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). By employing a hierarchical partitioning strategy, MLFMA can be parallelized efficiently on distributed-memory architectures. This way, it becomes possible to solve very large problems discretized with hundreds of millions of unknowns. Effectiveness of the developed simulation environment is demonstrated on various scattering problems involving canonic...
Citation Formats
L. Gurel, A. Unal, and Ö. S. Ergül, “Electromagnetic modeling of split-ring resonators,” 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55997.