Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
OPTIMIZATION OF DESIRABILITY FUNCTIONS AS A DNLP MODEL BY GAMS/BARON
Date
2010-02-04
Author
Öztürk, Başak
Köksal, Gülser
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Desirability functions of Derringer and Suich, one of the widely used approaches in multiresponse optimization, have nondifferentiable points in their formulations as a drawback. To solve the optimization problem of the overall desirability function, one way is to modify the individual desirability functions by approximation approaches and then to use the gradient based methods. Another way is to use the optimization techniques that do not employ the derivative information. In this study, we propose a new approach which is easy to implement and does not need assumptions like convexity and smoothness. Our approach is based on writing the optimization problem of the overall desirability function as a mixed-integer nonlinear problem, and then putting a constraint on the integer variable to obtain a continuous formulation. The resulting problem is solved as a nonlinear model with discontinuous first order derivatives (DNLP) with Branch And Reduce Optimization Navigator (BARON), a new solver of the General Algebraic Modeling System (GAMS) for nonconvex optimization problems. The solutions obtained for two example problems are better than those of the others.
Subject Keywords
Desirability functions
,
Multiresponse optimization
,
Multiobjective optimization
,
Nonlinear mixed-integer programming
,
Nonsmooth function
,
Quality engineering
,
GAMS/BARON
URI
https://hdl.handle.net/11511/56020
Collections
Department of Industrial Engineering, Conference / Seminar