Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Low-Complexity Graph-Based LMMSE Receiver Designed for Colored Noise Induced by FTN-Signaling
Date
2014-04-09
Author
Sen, Pinar
Aktas, Tugcan
Yılmaz, Ali Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
We propose a low complexity graph-based linear minimum mean square error (LMMSE) equalizer which considers both the intersymbol interference (ISI) and the effect of non-white noise inherent in Faster-than-Nyquist (FTN) signaling. In order to incorporate the statistics of noise signal into the factor graph over which the LMMSE algorithm is implemented, we suggest a method that models it as an autoregressive (AR) process. Furthermore, we develop a new mechanism for exchange of information between the proposed equalizer and the channel decoder through turbo iterations. Based on these improvements, we show that the proposed low complexity receiver structure performs close to the optimal decoder operating in ISI-free ideal scenario without FTN signaling through simulations.
Subject Keywords
FTN-signaling
,
LMMSE equalization
,
Colored noise
URI
https://hdl.handle.net/11511/56027
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar