Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
IMPROVING THE NUMERICAL EFFICIENCY OF THE METHOD OF MOMENTS FOR PRINTED GEOMETRIES
Date
1994-06-24
Author
Alatan, Lale
BIRAND, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
72
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/56092
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions
Ergül, Özgür Salih (American Geophysical Union (AGU), 2006-07-18)
[ 1] Basis functions with linear variations are investigated in terms of the accuracy of the magnetic field integral equation (MFIE) and the combined-field integral equation (CFIE), on the basis of recent reports indicating the inaccuracy of the MFIE. Electromagnetic scattering problems involving conducting targets with arbitrary geometries, closed surfaces, and planar triangulations are considered. Specifically, two functions with linear variations along the triangulation edges in both tangential and norma...
Improving the accuracy of the surface integral equations for low-contrast dielectric scatterers
Ergül, Özgür Salih (2007-06-15)
Solutions of scattering problems involving low-contrast dielectric objects are considered by employing surface integral equations. A stabilization procedure based on extracting the non-radiating part of the induced currents is applied so that the remaining radiating currents can be modelled appropriately and the scattered fields from the low-contrast objects can be calculated with improved accuracy. Stabilization is applied to both tangential (T) and normal (N) formulations in order to use the benefits of d...
Improving the trajectory tracking performance of autonomous orchard vehicles using wheel slip compensation
BAYAR, Gokhan; Bergerman, Marcel; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2016-06-01)
In this paper, the effects of wheel slip estimation and compensation of trajectory tracking for orchard applications were investigated. A slippage estimator was developed and adapted into a car-like robot model. Steering and velocity commands were generated using a model-based control approach. The whole system was implemented and tested on an autonomous orchard vehicle that has steerable front wheels and actuated rear wheels. A high accuracy positioning system was used to estimate the longitudinal and late...
Improving the performance of speaker identification systems by classifier combination techniques
Altınçay, Hakan; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2000)
Improving the performance of simulated annealing in structural optimization
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-03-01)
This study aims at improving the performance of simulated annealing (SA) search technique in real-size structural optimization applications with practical design considerations. It is noted that a standard SA algorithm usually fails to produce acceptable solutions to such problems associated with its poor convergence characteristics and incongruity with theoretical considerations. In the paper novel approaches are developed and incorporated into the standard SA algorithm to eliminate the observed drawbacks ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Alatan and T. BIRAND, “IMPROVING THE NUMERICAL EFFICIENCY OF THE METHOD OF MOMENTS FOR PRINTED GEOMETRIES,” 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56092.