Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Key protected classification for collaborative learning
Download
index.pdf
Date
2020-08-01
Author
Sariyildiz, Mert Bulent
Cinbiş, Ramazan Gökberk
Ayday, Erman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
131
downloads
Cite This
© 2020Large-scale datasets play a fundamental role in training deep learning models. However, dataset collection is difficult in domains that involve sensitive information. Collaborative learning techniques provide a privacy-preserving solution, by enabling training over a number of private datasets that are not shared by their owners. However, recently, it has been shown that the existing collaborative learning frameworks are vulnerable to an active adversary that runs a generative adversarial network (GAN) attack. In this work, we propose a novel classification model that is resilient against such attacks by design. More specifically, we introduce a key-based classification model and a principled training scheme that protects class scores by using class-specific private keys, which effectively hide the information necessary for a GAN attack. We additionally show how to utilize high dimensional keys to improve the robustness against attacks without increasing the model complexity. Our detailed experiments demonstrate the effectiveness of the proposed technique. Source code will be made available at https://github.com/mbsariyildiz/key-protected-classification.
Subject Keywords
Signal Processing
,
Software
,
Artificial Intelligence
,
Computer Vision and Pattern Recognition
URI
https://hdl.handle.net/11511/56186
Journal
Pattern Recognition
DOI
https://doi.org/10.1016/j.patcog.2020.107327
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
A statistical approach to sparse multi-scale phase-based stereo
Ulusoy, İlkay (Elsevier BV, 2007-09-01)
In this study, a multi-scale phase based sparse disparity algorithm and a probabilistic model for matching uncertain phase are proposed. The features used are oriented edges extracted using steerable filters. Feature correspondences are estimated using phase-similarity at multiple scale using a magnitude weighting scheme. In order to achieve sub-pixel accuracy in disparity, we use a fine tuning procedure which employs the phase difference between corresponding feature points. We also derive a probabilistic ...
Low-level multiscale image segmentation and a benchmark for its evaluation
Akbaş, Emre (Elsevier BV, 2020-10-01)
In this paper, we present a segmentation algorithm to detect low-level structure present in images. The algorithm is designed to partition a given image into regions, corresponding to image structures, regardless of their shapes, sizes, and levels of interior homogeneity. We model a region as a connected set of pixels that is surrounded by ramp edge discontinuities where the magnitude of these discontinuities is large compared to the variation inside the region. Each region is associated with a scale that d...
Data-driven image captioning via salient region discovery
Kilickaya, Mert; Akkuş, Burak Kerim; Çakıcı, Ruket; Erdem, Aykut; Erdem, Erkut; İKİZLER CİNBİŞ, NAZLI (Institution of Engineering and Technology (IET), 2017-09-01)
n the past few years, automatically generating descriptions for images has attracted a lot of attention in computer vision and natural language processing research. Among the existing approaches, data-driven methods have been proven to be highly effective. These methods compare the given image against a large set of training images to determine a set of relevant images, then generate a description using the associated captions. In this study, the authors propose to integrate an object-based semantic image r...
Object-based image labeling through learning by example and multi-level segmentation
Xu, Y; Duygulu, P; Saber, E; Tekalp, AM; Yarman Vural, Fatoş Tunay (Elsevier BV, 2003-06-01)
We propose a method for automatic extraction and labeling of semantically meaningful image objects using "learning by example" and threshold-free multi-level image segmentation. The proposed method scans through images, each of which is pre-segmented into a hierarchical uniformity tree, to seek and label objects that are similar to an example object presented by the user. By representing images with stacks of multi-level segmentation maps, objects can be extracted in the segmentation map level with adequate...
Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?
KRÜGER, Norbert; JANSSEN, Peter; Kalkan, Sinan; LAPPE, Markus; LEONARDİS, Ales; PİATER, Justus; Rodriguez-Sanchez, Antonio J.; WİSKOTT, Laurenz (Institute of Electrical and Electronics Engineers (IEEE), 2013-08-01)
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Or...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. B. Sariyildiz, R. G. Cinbiş, and E. Ayday, “Key protected classification for collaborative learning,”
Pattern Recognition
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56186.