Towards interoperable and composable trajectory simulations: an ontology-based approach

Durak, U.
Oğuztüzün, Mehmet Halit S.
Algin, C. Koksal
Ozdikis, O.
Trajectory simulation is a software module that computes the flight path and flight parameters of munitions. It is used throughout the engineering process, including simulations for studying the design trade-offs, to mission simulations for defended area analysis. In this wide application domain, reuse has always been one of the challenges of the trajectory simulation community. We apply an ontology-based simulation development methodology to fulfil the functional requirements of a trajectory simulation while targeting reuse through interoperability and composability. Trajectory Simulation ONTology (TSONT) has been constructed as a simulation conceptual model for trajectory simulations. Based on the knowledge captured in TSONT, a domain-oriented reuse methodology has been leveraged to develop HLA-compliant trajectory simulations. A trajectory simulation federate was developed by conforming to the simulation object model based on TSONT. This paper demonstrates our approach to achieve composable and interoperable simulations over a case study in which a trajectory simulation federate serves in a variety of federations that have been constructed.


On the use of model-driven engineering principles for the management of simulation experiments
Dayibas, Orcun; Oğuztüzün, Mehmet Halit S.; Yilmaz, Levent (Informa UK Limited, 2019-04-03)
Simulation experiments are an essential part of computational science and engineering. The use of simulation models is widely adopted by practitioners from diverse areas of applied sciences. Nevertheless, simulations are rarely replicated due to reuse and maintenance challenges related to models and data. In this respect, we propose that crucial and labor intensive parts of simulation experiments could be supported by model transformations. This work focuses on model-driven engineering practices to enable r...
Development of a State Dependent Riccati Equation Based Tracking Flight Controller for an Unmanned Aircraft
Tekinalp, Ozan (2013-08-22)
A dual loop nonlinear State Dependent Riccati Equation (SDRE) control method is developed for the flight control of an unmanned aircraft. The outer loop addresses the attitude and altitude kinematics, while the inner loop handles the translational and rotational equations of motion. The control strategy utilizes a tracking control problem. The mismatch due to the SDC factorization of the inner loop is handled with a nonlinear compensator again derived from the tracking control formulation. The quadratic opt...
Domain analysis for Reusable Trajectory Simulation
Durak, Umut; Mahmutyazicioǧlu, Gökmen; Oğuztüzün, Mehmet Halit S. (2005-12-01)
Trajectory simulations can be regarded as computational tools to calculate the flight path and other flight parameters of munitions. They have a wide range of uses from concept formation to training simulator construction throughout the lifecycle of a weapons system. Trajectory simulations differ widely with respect to their performance and fidelity characteristics. From our observations, it is a common practice in the industry that developments of these simulations are carried out as isolated projects alth...
Schedulability analysis of real-time multi-frame co-simulations on multi-core platforms
Ahsan, Muhammad Uzair; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2020)
For real-time simulations, the fidelity of simulation does not depend only on the functional accuracy of simulation but also on its timeliness. It is helpful for developers if we can analyze and verify that a simulation will always meet its timing requirements while keeping an acceptable level of accuracy. Abstracting the simulated processes simply as software tasks allows us to transform the problem of verifying timeliness into a schedulability analysis problem where tasks are checked if they are schedulab...
Coordinate systems for a naval virtual environment
Kılıç, Aslı; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2005)
The purpose of this thesis is implementing World Geodetic System (WGS) for Naval Surface Tactical Maneuvering Simulation System (NSTMSS), a High Level Architecture (HLA) based naval simulation, and also implementing body coordinate system for the ships of NSTMSS and its combination with WGS so that NSTMSS can be more accurate, and new ship dynamics models can be integrated to the NSTMSS environment more easily. To improve the coordinate system of NSTMSS these methods were used; World Geodetic System - 1984 ...
Citation Formats
U. Durak, M. H. S. Oğuztüzün, C. K. Algin, and O. Ozdikis, “Towards interoperable and composable trajectory simulations: an ontology-based approach,” JOURNAL OF SIMULATION, pp. 217–229, 2011, Accessed: 00, 2020. [Online]. Available: