Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electromagnetic target classification of aircraft modeled by conducting wire structures using a natural resonance based feature extraction technique Iletken tel yapilarla modellenmiş uçaklarin elektromanyetik doǧal rezonanslara dayali bir öznitelik çikarim tekniǧi ile siniflandirilmasi
Date
2005-12-01
Author
Ersoy, Mehmet Okan
Sayan, Gönül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
The problem studied in this paper, is the design of an electromagnetic target classifier by using a natural resonance based electromagnetic feature extraction technique applied to the small-scale aircraft targets. The aircraft targets are modeled by perfectly conducting, thin wire structures and the electromagnetic fields back-scattered from targets are numerically generated for five aircraft models. The Wigner-Ville time-frequency distribution (WD) is applied to the electromagnetic back-scattered responses of targets from different aspects. Then, feature vectors are extracted from suitably chosen late-time portions of the WD outputs, which include natural resonance related information for every target and aspect to decrease aspect dependency. The database of the classifier is constructed by the feature vectors extracted at only a few reference aspects. Principal components analysis is also used to fuse the feature vectors and/or late-time aircraft responses extracted from reference aspects of a given target into a single characteristic feature vector of that target to further reduce aspect dependency. Consequently, an almost aspect independent classifier is designed for small-scale aircraft targets reaching high correct classification rate. © 2005 IEEE.
URI
https://hdl.handle.net/11511/56255
DOI
https://doi.org/10.1109/siu.2005.1567729
Conference Name
Proceedings of the IEEE 13th Signal Processing and Communications Applications Conference, 2005
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Electromagnetic target classification of small-scale aircraft modeled by conducting wire structures using a natural resonance based feature extraction technique
Ersoy, Mehmet Okan; Sayan, Gönül (2005-12-01)
The problem studied in this paper is the design of an electromagnetic target classifier for small-scale aircraft targets by using a natural resonance based feature extraction technique supported by feature fusion. The aircraft targets are modeled by perfectly conducting straight thin wire structures and the electromagnetic fields back-scattered from targets are numerically generated. This technique uses the Wigner-Ville distribution (WD) and the principal component analysis (PCA). The technique is applied t...
Application of a natural-resonance based feature extraction technique to small-scale aircraft wires for electromagnetic target classification
Ersoy, Mehmet Okan; Sayan, Gönül; Department of Electrical and Electronics Engineering (2004)
The problem studied in this thesis, is the classification of the small-scale aircraft targets by using a natural resonance based electromagnetic feature extraction technique. The aircraft targets are modeled by perfectly conducting, thin wire structures. The electromagnetic back-scattered data used in the classification process, are numerically generated for five aircraft models. A contemporary signal processing tool, the Wigner-Ville distribution is employed in this study in addition to using the principal...
Natural resonance-based feature extraction with reduced aspect sensitivity for electromagnetic target classification
Sayan, Gönül (Elsevier BV, 2003-07-01)
This paper presents a model-based electromagnetic feature extraction technique that makes use of time–frequency analysis to extract natural resonance-related target features from scattered signals. In this technique, the discrete auto-Wigner distribution of a given signal is processed to obtain a partitioned energy density vector with a significantly reduced sensitivity to aspect angle. Each partition of this vector contains, in the approximate sense, spectral distribution of the signal energy confined to a...
A Radar Target Recognition Method with MUSIC Algorithm: Application to Aircraft Targets with Measured Scattered Data
Secmen, M.; Turhan-Sayan, G.; Sayan, Gönül (2008-05-30)
This paper demonstrates the usefulness of an ultra wideband target recognition method in the case of realistic and complicated target geometries at resonance region. The method utilizes the MUSIC algorithm to extract the natural resonance-related scattering features of targets. The resulting features give the power distribution maps of targets. These maps are called as fused MUSIC spectrum matrices and used as the main target recognition feature in the method. The fusion process is needed to reduce the aspe...
Zero-field nuclear magnetic resonance of chemically exchanging systems
Barskiy, Danila A.; Taylen, Michael C. D.; Marco-Rius, Irene; Kurhanewicz, John; Vigneron, Daniel B.; Çıkrıkcı, Sevil; Aydoğdu, Ayça; Reh, Moritz; Pravdivtsev, Andrey N.; Hoevener, Jan-Bernd; Blanchard, John W.; Wu, Teng; Budker, Dmitry; Pines, Alexander (Springer Science and Business Media LLC, 2019-07-05)
Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [N-15]ammonium ((NH4+)-N-15) as a model system. We show that pH-dependent chemical exchange substantially affects ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. O. Ersoy and G. Sayan, “Electromagnetic target classification of aircraft modeled by conducting wire structures using a natural resonance based feature extraction technique Iletken tel yapilarla modellenmiş uçaklarin elektromanyetik doǧal rezonanslara dayali bir öznitelik çikarim tekniǧi ile siniflandirilmasi,” Kayseri, Turkey, 2005, vol. 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56255.