Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An analysis of stochastic disturbances on nonlinear missile-target engagements based on the adjoint method
Date
2016-01-01
Author
Sezer, Emrah
Nalcı, Mehmet Ozan
Kutay, Ali Türker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
176
views
0
downloads
Cite This
© 2016, American Institute of Aeronautics and Astronautics Inc. All rights reserved.A stochastic adjoint analysis tool that can capture the dominant nonlinearities of a typical missile-target engagement scenario, in addition to the dominant dynamics and stochastic error sources of a missile is developed. The two dimensional, nonlinear missile target terminal engagement problem is modeled in state dependent coefficient form, to generate a set of truth data. Dominant missile dynamics regarding the miss distance, such as the missile airframe response, and the seeker tracking response is accounted for in the system dynamics. The linear time varying counterpart of the nonlinear engagement model is formed by utilizing the state dependent coefficient form. The nominal state history of the nonlinear model is obtained through numerical solution, and the linear time varying model system matrix, input matrix and the output matrix are populated by linearization around the nominal state history. The resulting linear time varying model is validated under stochastic disturbances such as range dependent seeker line of sight rate noise and initial heading error against the truth data. The adjoint counterpart of the linear time varying model is shown to generate realistic mean and root mean square values, when compared to the original nonlinear model.
URI
https://hdl.handle.net/11511/56258
DOI
https://doi.org/10.2514/6.2016-1190
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A computational study of flow separation characteristics and wake profiles behind a flapping airfoil
Tuncer, İsmail Hakkı (1999-01-01)
© 1999 American Institute of Aeronautics and Astronautics, Inc. All rights reserved.Unsteady, viscous flowfields over a NACA0012 airfoil oscillated in plunge and/or pitch at various reduced frequency, amplitude and phase shift are computed. Vortical wake formations, boundary layer flows at the leading edge, the formation of leading edge vortices and their downstream convection are presented in terms of unsteady particle traces. Flow separation characteristics and thrust producing wake profiles are identifie...
A modeling and simulation tool for safe store separation envelope generation using monte carlo simulations
Unal, Kenan; Baran, Özgür Uğraş (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.When an air released store is developed or undergoes substantial updates, integration to aircraft is realized through a certification process. One of the most important steps of the certification process is to determine safe separation envelope. For this process there are several approaches: full scale flight tests, computational fluid dynamics (CFD) simulation techniques and wind tunnel captive trajectory tests. Separ...
A multi-fidelity, multi-disciplinary analysis and optimization framework for the design of morphing UAV wings
Ciarella, Andrea; Tsotskas, Christos; Hahn, Marco; Werter, Noud P. M.; De Breuker, Roeland; Beaverstock, Chris S.; Friswell, Michael I.; Yang, Yosheph; Özgen, Serkan; Antoniadis, Antonios; Tsoutsanis, Panagiotis; Drikakis, Dimitris (null; 2015-01-01)
© 2015 American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A framework for the design and optimization of a morphing wing is presented. It allows the user to simplify the design process of a morphing UAV wing with a simple and effective interface with the possibility to easily switch between flight phases and morphing concepts. It consists of two main solvers: a high-fidelity CFD module for detailed RANS simulation and a fast low-fidelity module that solves the aeroelastic prob...
A Modification to Adaptive Control with Time-varying Learning Rate for Improved Transient Performance
Yayla, Metehan; Kutay, Ali Türker (2022-01-01)
© 2022, American Institute of Aeronautics and Astronautics Inc. All rights reserved.In this study, we propose a new adaptive weight update law using frequency-limited estimation of the matched uncertainty. Many adaptive parameter adjustment laws try to suppress the effects of uncertainties using forcing terms consisting of tracking error only. However, it has been widely studied that including the uncertainty estimation error in the adaptation law enhances the transient performance significantly. In our pro...
Analysis of effects of different diffusion models in hypersonic flow regimes
Gur, H. Berk; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sezer, M. O. Nalcı, and A. T. Kutay, “An analysis of stochastic disturbances on nonlinear missile-target engagements based on the adjoint method,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56258.