Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Short glass fiber reinforced ABS and ABS/PA6 composites: Processing and characterization
Date
2005-12-01
Author
Ozkoc, G
Bayram, Göknur
Bayramli, E
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
In this study acrylonitrile-butadiene-styrene (ABS) terpolymer was reinforced with 3-aminopropyltrimethoxysilane (APS)-treated short glass fibers (SGFs). The effects of SGF concentration and extrusion process conditions, such as the screw speed and barrel temperature profile, on the mechanical properties of the composites were examined. Increasing the SGF concentration in the ABS matrix from 10 wt% to 30 wt% resulted in improved tensile strength, tensile modulus and flexural modulus, but drastically lowered the strain-at-break and the impact strength. The average fiber length decreased when the concentration of glass fibers increased. The increase in screw speed decreased the average fiber length, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength were affected negatively and the strain-at-break was affected positively. The increase in extrusion temperature decreased the fiber length degradation, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength increased. At higher temperatures the ABS matrix degraded and the mechanical strength of the composites decreased. To obtain a strong interaction at the interface, polyamide-6 (PA6) at varying concentrations was introduced into the ABS/30 wt% SGF composite. The incorporation and increasing amount of PA6 in the composites broadened the fiber length distribution (FLD) owing to the low melt viscosity of PA6. Tensile strength, tensile modulus, flexural modulus, and impact strength values increased with an increase in the PA6 content of the ABS/PA6/SGF systems due to the improved adhesion at the interface, which was confirmed by the ratio of tensile strength to flexural strength as an adhesion parameter. These results were also supported by scanning electron micrographs of the ABS/PA6/SGF composites, which exhibited an improved adhesion between the SGFs and the ABS/PA6 matrix.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/56289
Journal
POLYMER COMPOSITES
DOI
https://doi.org/10.1002/pc.20144
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
A novel multi-electrochromic polymer based on selenophene and benzotriazole via electrochemical and chemical polymerization
Demir, Fatma; Keles, Duygu; Karabag, Aliekber; Çırpan, Ali; Toppare, Levent Kamil (Informa UK Limited, 2019-03-04)
In this study, a novel donor-acceptor type monomer was designed based on selenophene and benzotriazole with a bulky pendant group and synthesized through Stille coupling reaction. The monomer was polymerized electrochemically by using cyclic voltammetry and also chemically by oxidation in the presence of FeCl3. Both polymers were then compared in terms of their optical properties, electrochemical and spectroelectrochemical behaviors, kinetic and colorimetric properties and surface morphologies. Independent ...
Dual type complementary colored polymer electrochromic devices based on conducting polymers of poly(hexanedioic acid bis-(2-thiophen-3-yl-ethyl ester)
Camurlu, P; Toppare, Levent Kamil (Informa UK Limited, 2006-03-01)
In this study, dual type polymer electrochromic devices (ECDs) based on homopolymer and copolymer of hexanedioic acid bis-(2-thiophen-3-yl-ethyl ester) with 3,4-ethylene dioxythiophene (EDOT) were constructed, where PEDOT functioned as the cathodically coloring layer. Spectroelectrochemistry, switching ability, stability, open circuit memory and color of the devices were investigated. Results of the kinetic studies showed these devices exhibit switching times around 1.8 s with an optical contrast of 24-25.3...
Characteristics of Impact Modified Polystyrene/Organoclay Nanocomposites
Yeniova, Canan Esma; Yılmazer, Ülkü (Wiley, 2010-11-01)
The poor impact resistance of Polystyrene (PS) was enhanced by the addition of elastomeric material, SEBS-g-MA. To prevent the reduction in strength and stiffness, organoclay Cloisite (R) 25A was used as filler and introduced into the matrix by a corotating twin screw extruder. Throughout the study, the clay content was kept at 2 wt%, whereas the content of SEBS-g-MA was varied between 5 and 40 wt%. It was found that Cloisite (R) 25A displays well dispersion in the ternary nanocomposites and the degree of d...
Solid State Polymerization of N-vinylcaprolactam via Gamma Irradiation and Characterization
Usanmaz, Ali; Ozdemir, Tonguc; Polat, Özlem (Informa UK Limited, 2009-01-01)
In this study, N-vinylcaprolactam was polymerized via gamma irradiation in the solid state. The polymerization was carried out at room temperature both under vacuum and open to atmosphere. The polymerization mechanism showed auto acceleration and the rate of polymerization was higher in the presence of oxygen. Complete conversion was obtained under vacuum conditions and 90% conversion was obtained in the case of polymerization open to atmosphere. The polymers were characterized by FTIR, NMR, DSC, TGA, GPC, ...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ozkoc, G. Bayram, and E. Bayramli, “Short glass fiber reinforced ABS and ABS/PA6 composites: Processing and characterization,”
POLYMER COMPOSITES
, pp. 745–755, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56289.