Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Solid State Polymerization of N-vinylcaprolactam via Gamma Irradiation and Characterization
Date
2009-01-01
Author
Usanmaz, Ali
Ozdemir, Tonguc
Polat, Özlem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
In this study, N-vinylcaprolactam was polymerized via gamma irradiation in the solid state. The polymerization was carried out at room temperature both under vacuum and open to atmosphere. The polymerization mechanism showed auto acceleration and the rate of polymerization was higher in the presence of oxygen. Complete conversion was obtained under vacuum conditions and 90% conversion was obtained in the case of polymerization open to atmosphere. The polymers were characterized by FTIR, NMR, DSC, TGA, GPC, X-ray diffraction and mass spectrometry tests. FTIR and NMR results showed that polymerization proceeded through the vinyl groups and caprolactam is pendant group. DSC results showed that the polymer obtained could be polymerized further or crosslinked by heat treatment. The Tg value for the polymer obtained from radiation induced polymerization was about 135C and increased to 174.6C after thermal treatment. Molecular weights of some polymer samples were measured by GPC. X-ray diffraction studies showed that the monomer structure was retained up to about 86% conversion of monomer to polymer. The chain structure of the polymer was confirmed by mass spectroscopy results.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/34825
Journal
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY
DOI
https://doi.org/10.1080/10601320902851868
Collections
Department of Modern Languages, Article