Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique
Date
2008-05-01
Author
Bayrakceken, Ayse
Smirnova, Alevtina
Kitkamthorn, Usanee
Aindow, Mark
Turker, Lemi
Eroğlu, İnci
Erkey, Can
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
Pt-based electrocatalysts were prepared on different carbon supports which are multiwall carbon nanotubes (MWCNTs), Vulcan XC 72R (VXR) and black pearl 2000 (BP2000) using a supercritical carbon dioxide (ScCO2) deposition technique. These catalysts were characterized by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and cyclic voltammetry (CV). XRD and HRTEM results demonstrated that the ScCO2 deposition technique enables a high surface area metal phase to be deposited, with the size of the Pt particles ranging from 1 to 2 nm. The electrochemical surface areas (ESAs) of the prepared electrocatalysts were compared to the surface areas of commercial ETEK Pt/C (10 wt% Pt) and Tanaka Pt/C (46.5 wt% Pt) catalysts. The CV data indicate that the ESAs of the prepared Pt/VXR and Pt/MWCNT catalysts are about three times larger than that of the commercial ETEK catalyst for similar (10 wt% Pt) loadings. Oxygen reduction activity was investigated by hydrodynamic voltammetry. From the slope of Koutecky-Levich plots, the average number of electrons transferred in the oxygen reduction reaction (ORR) was 3.5, 3.6 and 3.7 for Pt/BP2000, Pt/VXR and Pt/MWCNT, correspondingly, which indicated almost complete reduction of oxygen to water. (C) 2008 Published by Elsevier B.V.
Subject Keywords
Physical and Theoretical Chemistry
,
Renewable Energy, Sustainability and the Environment
,
Electrical and Electronic Engineering
,
Energy Engineering and Power Technology
URI
https://hdl.handle.net/11511/56324
Journal
JOURNAL OF POWER SOURCES
DOI
https://doi.org/10.1016/j.jpowsour.2007.12.086
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Pt incorporated hollow core mesoporous shell carbon nanocomposite catalyst for proton exchange membrane fuel cells
Ficicilar, Berker; BAYRAKÇEKEN YURTCAN, Ayşe; Eroğlu, İnci (Elsevier BV, 2010-09-01)
In the present study, various commercial carbon black materials like Vulcan XC72, Black Pearl 2000, and Regal 330 were used as supporting material for polymer electrolyte membrane fuel cell (PEMFC) electrocatalysts. A promising carbon material exhibiting hollow core mesoporous shell (HCMS) structure was synthesized by the template replication of the silica spheres with solid core and mesoporous shell structure. Two carbon supports with similar pore texture were prepared by the injection of two different car...
Enhanced capacitive behaviour of graphene based electrochemical double layer capacitors by etheric substitution on ionic liquids
Siyahjani, Shirin; Oner, Saliha; Diker, Halide; GÜLTEKİN, BURAK; Varlikli, Canan (Elsevier BV, 2020-08-01)
In this study, we report the effect of etheric substituents in imidazolium and ammonium based ionic liquids (IL) on the performance of electrochemical double layer capacitors (EDLC) consisted of gel polymer electrolyte (GPE) and reduced graphene oxide (RGO) electrode. GPEs contain poly (vinylidene fluoride-hexafluompropylene) (PVDF-HFP) and the ILs. Ammonium and imidazolium based ionic liquids (ILs) differ by their length of etheric groups and etheric group contents, respectively. According to the cyclic vo...
Novel structured gadolinium doped ceria based electrolytes for intermediate temperature solid oxide fuel cells
Timurkutluk, Bora; Timurkutluk, Cigdem; MAT, MAHMUT DURSUN; Kaplan, Yuksel (Elsevier BV, 2011-11-15)
Novel three-layered intermediate temperature solid oxide fuel cell (SOFC) electrolytes based on gadolinium doped ceria (GDC) are developed to suppress the electronic conductivity of GDC, to improve the mechanical properties of the cell and to minimize power loss due to mixed conductive nature of GDC. Three different electrolytes are fabricated by sandwiching thin YSZ. ScSZ and ScCeSZ between two relatively thick GDC layers. An electrolyte composed of pure GDC is also manufactured for comparison. NiO/GDC and...
Hydrogen generation from hydrolysis of ammonia-borane using Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2 under stirred conditions
Rakap, Murat; Kalu, Egwu Eric; Özkar, Saim (Elsevier BV, 2012-07-15)
The employment of Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2 in hydrogen generation from the hydrolysis of ammonia-borane (H3NBH3, AB) under stirred conditions are reported. Both catalysts are found to be highly active, isolable, and reactivatable in the hydrolysis of ammonia-borane even at low concentrations and temperature. The Arrhenius activation energies were found to be 54.9 and 54.7 kJ mol(-1) for the hydrolysis of ammonia-borane catalyzed by Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2, respectively. Maximum hydrogen gener...
Mo doping of layered Li (NixMnyCo1-x-y-zMz)O-2 cathode materials for lithium-ion batteries
PİŞKİN, BERKE; Uygur, Cansu Savas; Aydınol, Mehmet Kadri (Wiley, 2018-10-10)
We systematically investigated the effects of Mo doping on the structure, morphology, and the electrochemical performance of Li (NixMnyCo1-x-y-zMz)O-2 (NMC) cathode materials for Li-ion batteries. Layered NMC cathodes were synthesized with the ratio of 111, 622, and 226 via spray pyrolysis yielding submicron-sized aggregates in the shape of hollow spherical particles. We performed X-ray diffraction analyses to determine the present phases and the ordering in structure. X-ray diffraction pattern of Mo-doped ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bayrakceken et al., “Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique,”
JOURNAL OF POWER SOURCES
, pp. 532–540, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56324.