Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mo doping of layered Li (NixMnyCo1-x-y-zMz)O-2 cathode materials for lithium-ion batteries
Date
2018-10-10
Author
PİŞKİN, BERKE
Uygur, Cansu Savas
Aydınol, Mehmet Kadri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
283
views
0
downloads
Cite This
We systematically investigated the effects of Mo doping on the structure, morphology, and the electrochemical performance of Li (NixMnyCo1-x-y-zMz)O-2 (NMC) cathode materials for Li-ion batteries. Layered NMC cathodes were synthesized with the ratio of 111, 622, and 226 via spray pyrolysis yielding submicron-sized aggregates in the shape of hollow spherical particles. We performed X-ray diffraction analyses to determine the present phases and the ordering in structure. X-ray diffraction pattern of Mo-doped 111, 226, and 622 cathodes showed well-defined [006]/[102] and [108]/[110] doublets, indicating the layered structure, and good hexagonal ordering. Galvanostatic charge/discharge and electrical impedance spectroscopy measurements were carried out to reveal the effect of Mo doping on the electrochemical performance of the cathodes. Charge/discharge measurements after 20cycles indicated that the Mo-doped 111 and 622 NMC cathodes performed a capacity retention of 80% and 81% respectively. Present findings reveal the stabilization effect of Mo in layered NMC structure, especially in the case of Ni-rich NMC cathodes.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Nuclear Energy and Engineering
URI
https://hdl.handle.net/11511/36733
Journal
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
DOI
https://doi.org/10.1002/er.4121
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity
Bayer, IS; Eroğlu, İnci; Turker, L (Wiley, 2001-03-10)
The photogalvanic effect in electrochemical cells, employing aqueous Methylene blue and Fe(II)/Fe(III) couple electrolyte and nickel-mesh electrodes, were experimentally investigated. Five different standard H-cell configurations were set-up by modifying the electrolyte. Long-term open-circuit Voltage measurements were conducted in order to test the stability of the cells. Light on-off reproducibility experiments were also carried out during lengthy cell operations. By comparing experimental quantum yield w...
Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials
Pişkin, B.; Uygur, Cansu Savaş; Aydınol, Mehmet Kadri (Elsevier BV, 2020-03-01)
An investigation was carried out on layered Li(NixMnyCo1-x-y)O-2 (NMC) cathode active materials for Li-ion batteries to determine the effect of morphology on their electrochemical performances. The NMC active materials were doped with Mo or W (2 wt%) in the study. Doped NMC cathodes with a ratio of 111, 622 and 226 (NiMnCo) were synthesized by spray pyrolysis which yielded aggregates were submicron size. A systematic investigation was performed, and two distinct morphology types were identified in active ma...
Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor
Boran, Asli; Erkan, Serdar; Özkar, Saim; Eroglu, Inci (Wiley, 2013-04-01)
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an incre...
Experimental investigation of CO tolerance in high temperature PEM fuel cells
DEVRİM, YILSER; Albostan, Ayhan; Devrim, Huseyin (Elsevier BV, 2018-10-04)
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to th...
Electrochemical performance and modeling of lithium-sulfur batteries with varying carbon to sulfur ratios
Michaelis, Charles; Erisen, Nisa; PALA, DAMLA EROĞLU; Koenig, Gary M. (Wiley, 2019-02-01)
Lithium-sulfur batteries have attracted much research interest because of their high theoretical energy density and low-cost raw materials. While the electrodes are composed of readily available materials, the processes that occur within the cell are complex, and the electrochemical performance of these batteries is very sensitive to a number of cell processing parameters. Herein, a simple electrochemical model will be used to predict, with quantitative agreement, the electrochemical properties of lithium-s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. PİŞKİN, C. S. Uygur, and M. K. Aydınol, “Mo doping of layered Li (NixMnyCo1-x-y-zMz)O-2 cathode materials for lithium-ion batteries,”
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
, pp. 3888–3898, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36733.