Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Theoretical study of tetramethyl- and tetra-tert-butyl-substituted cyclobutadiene and tetrahedrane
Date
2000-02-17
Author
Balcı, Metin
McKee, ML
Schleyer, PV
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
0
downloads
Cite This
The tetramethyl and tetra-tert-butyl derivatives of cyclobutadiene and tetrahedrane have been studied with ab initio and density functional methods. The ring in tetra-tert-butylcyclobutadiene displays very unequal bond lengths (1.354, 1.608 Angstrom) and confirms the earlier suspicion that the low-temperature X-ray structure was distorted. The C-C single bonds have the longest separations found to date between sp(2)-hybridized carbons. Tetra-rert-butyltetrahedrane, which prefers T over Td symmetry, is calculated to be 1.5 kcal/mol more stable than tetra-tert-butylcyclobutadiene (B3LYP/6-311+G(d)//B3LYP/6-3 1G(d)). The dications, C4R42+, dianions, C4R42-, and dilithiated species, Li2C4R4 (R = H, Nle, t-Bu), also were studied to determine the effect of substitution on structure and stability. Finally, NICS (nucleus-independent chemical shifts) values were calculated and showed, as expected, the dications and dianions (4n + 2 pi-electrons) to be aromatic (negative NICS(0)) and the cyclobutadienes to be antiaromatic (positive NICS(0)).
Subject Keywords
Potential-Energy Surface
,
C Single Bond
,
Small Rings
,
Aromatic Systems
,
Chemical-Shifts
,
Huckel Aromaticity
,
Diffuse Functions
,
4-Membered Rings
,
Raman-Spectrum
,
Radical-Cation
URI
https://hdl.handle.net/11511/56344
Journal
JOURNAL OF PHYSICAL CHEMISTRY A
DOI
https://doi.org/10.1021/jp9922054
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Theoretical Study of Thermal Rearrangements of 1-Hexen-5-yne, 1,2,5-Hexatriene, and 2-Methylenebicyclo[2.1.0]pentane
Bozkaya, Ugur; Özkan, İlker (2012-03-02)
In this research, a comprehensive theoretical investigation of the thermal rearrangements of 1-hexen-5-yne, 1,2,5-hexatriene, and 2-methylenebicyclo[2.1.0]pentane is carried out employing density functional theory (DFT) and high level ab initio methods, such as the complete active space self-consistent field (CASSCF), multireference second-order Moller-Plesset perturbation theory (MRMP2), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. The potential energy surface (PES) for the ...
Experimental and numerical study of process-induced total spring-in of corner-shaped composite parts
Cicek, K. Furkan; Erdal Erdoğmuş, Merve; Kayran, Altan (2017-07-01)
Process-induced total spring-in of corner-shaped composite parts manufactured via autoclave-forming technique using unidirectional prepreg is studied both numerically and experimentally. In the numerical study, a three-dimensional finite element model which takes into account the cure shrinkage of the resin, anisotropic material properties of the composite part and the tool-part interaction is developed. The outcome of the numerical model is verified experimentally. For this purpose, U-shaped composite part...
Structural studies of polythiophenes
Kilic, GB; Toppare, Levent Kamil; Yurtsever, E (1996-03-15)
A theoretical investigation of the electronic structures of the oligomers of thiophene (T) and their derivatives, namely, 2-methylthiophene (2MT), 3-methylthiophene (3MT), 2-cyanothiophene (2CT) and 3-cyanothiophene (3CT), are presented. The most stable forms of the monomer, dimer, trimer and tetramers are obtained by the semi-empirical quantum mechanical methodology using AM1 parametrization. All possible binding sites are investigated in order to understand the bonding in polythiophenes. The 3-substituted...
Development of an incompressible navier-stokes solver with alternating cell direction implicit method on structured and unstructured quadrilateral grids
Baş, Onur; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2007)
In this research, the Alternating Cell Direction Implicit method is used in temporal discretisation of the incompressible Navier-Stokes equations and compared with the well known and widely used Point Gauss Seidel scheme on structured and quadrilateral unstructured meshes. A two dimensional, laminar and incompressible Navier-Stokes solver is developed for this purpose using the artificial compressibility formulation. The developed solver is used to obtain steady-state solutions with implicit time stepping m...
Theoretical investigation of hydroxytyrosol and its radicals
Erkoc, F; Keskin, N; Erkoç, Şakir (Elsevier BV, 2003-05-05)
The structural and electronic properties of hydroxytyrosol, its three radical isomers, and its three analogues hydroxytyrosol-dihydroxyl isomers have been investigated theoretically by performing semi-empirical self-consistent field molecular orbital theory calculations. The geometry of the systems have been optimized and the electronic properties have been calculated at the level of AMI method.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Balcı, M. McKee, and P. Schleyer, “Theoretical study of tetramethyl- and tetra-tert-butyl-substituted cyclobutadiene and tetrahedrane,”
JOURNAL OF PHYSICAL CHEMISTRY A
, pp. 1246–1255, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56344.