Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting
Date
2011-01-27
Author
ÜNAL, İBRAHİM
Senalp, Erdem Turker
YEŞİL, ALİ
Tulunay, Ersin
Tulunay, Yurdanur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
Ionospheric critical frequency (foF2) is an important ionospheric parameter in telecommunication. Ionospheric processes are highly nonlinear and time varying. Thus, mathematical modeling based on physical principles is extremely difficult if not impossible. The authors forecast foF2 values by using neural networks and, in parallel, they calculate foF2 values based on the IRI model. The foF2 values were forecast 1 h in advance by using the Middle East Technical University Neural Network model (METU-NN) and the work was reported previously. Since then, the METU-NN has been improved. In this paper, 1 h in advance forecast foF2 values and the calculated foF2 values have been compared with the observed values considering the Slough (51.5 degrees N, 0.6 degrees W), Uppsala (59.8 degrees N, 17.6 degrees E), and Rome (41.8 degrees N, 12.5 degrees E) station foF2 data. The authors have considered the models alternative to each other. The performance results of the models are promising. The METU-NN foF2 forecast errors are smaller than the calculated foF2 errors. The models may be used in parallel employing the METU-NN as the primary source for the foF2 forecasting.
Subject Keywords
Electrical and Electronic Engineering
,
General Earth and Planetary Sciences
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/56359
Journal
RADIO SCIENCE
DOI
https://doi.org/10.1029/2010rs004428
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Sectorized approach and measurement reduction for mutual coupling calibration of non-omnidirectional antenna arrays
Aksoy, Taylan; Tuncer, Temel Engin (American Geophysical Union (AGU), 2013-03-01)
Mutual coupling calibration is an important problem for antenna arrays. There are different methods proposed for omnidirectional antennas in the literature. However, many practical antennas have non-omnidirectional (NOD) characteristics. Hence, the previous mutual coupling calibration methods cannot be applied directly since the mutual coupling matrix of an NOD antenna array has angular dependency. In this paper, a sectorized approach is proposed with a transformation matrix for mutual coupling calibration ...
Modeling and synthesis of circular-sectoral arrays of log-periodic antennas using multilevel fast multipole algorithm and genetic algorithms
Ergül, Özgür Salih (American Geophysical Union (AGU), 2007-06-19)
Circular-sectoral arrays of log-periodic (LP) antennas are presented for frequency-independent operation and beam-steering capability. Specifically, nonplanar trapezoidal tooth LP antennas are considered in a circular array configuration, where closely spaced antennas occupy a sector of the circle. Electromagnetic interactions of the array elements, each of which is a complicated LP antenna structure, are rigorously computed with the multilevel fast multipole algorithm (MLFMA). Genetic algorithms (GAs) are ...
Joint spatial and temporal channel-shortening techniques for frequency selective fading MIMO channels
Toker, Canan; Chambers, JA; Baykal, Buyurman (2005-02-01)
It is well understood that the maximum likelihood estimator is a powerful equalisation technique for frequency selective fading channels, and in particular for MIMO systems. The complexity of this estimator, however, grows exponentially with the number of users and multipath taps, hence limiting the use of this algorithm in MIMO systems. In the paper, the authors propose a joint spatial and temporal channel-shortening filter as a pre-processor to reduce significantly the complexity of a maximum likelihood e...
Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions
Ergül, Özgür Salih (American Geophysical Union (AGU), 2006-07-18)
[ 1] Basis functions with linear variations are investigated in terms of the accuracy of the magnetic field integral equation (MFIE) and the combined-field integral equation (CFIE), on the basis of recent reports indicating the inaccuracy of the MFIE. Electromagnetic scattering problems involving conducting targets with arbitrary geometries, closed surfaces, and planar triangulations are considered. Specifically, two functions with linear variations along the triangulation edges in both tangential and norma...
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
Filik, T.; Tuncer, Temel Engin (American Geophysical Union (AGU), 2009-09-22)
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. ÜNAL, E. T. Senalp, A. YEŞİL, E. Tulunay, and Y. Tulunay, “Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting,”
RADIO SCIENCE
, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56359.