Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Molecular-dynamics simulation of the structural stability, energetics, and melting of Cu-n(n=13-135) clusters
Date
1997-08-01
Author
Ozdogan, C
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Cluster properties of copper have been investigated using the Molecular-Dynamics MD technique. The structural stability and energetics of spherical Cu, (n = 13 - 135) clusters have been investigated at temperatures T = 1 K and T = 300 K. It has been found that the average interaction energy per atom in the cluster decreases and reaches an asymptotic value as cluster size increases. The melting behaviour of clusters n = 13 and n = 55 have been investigated. It has been found that the melting temperature decreases as cluster size increases, and for clusters with multishell structures melting starts from the outermost shell. In the simulation an emprical potential energy function (PEF) proposed by Erkoc has been used, which contains two-body atomic interactions.
Subject Keywords
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/56442
Journal
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
DOI
https://doi.org/10.1007/s004600050312
Collections
Department of Physics, Article